Лекарственные растения и травы

Меню сайта

Образовательные ткани. Процесс деления клетки. Способы деления клеток растений


10.Способы деления клеток

Способы деления эукариотических клеток: митоз, мейоз, амитоз

Митотический цикл. Митоз

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

studfiles.net

Деление растительных клеток

Анатомия Деление растительных клеток

просмотров - 113

Клетка делится, когда достигает определœенного размера и развития.

Различают следующие способы делœения клеток: митоз (непрямое делœение), амитоз (прямое делœение) и мейоз.

Митоз

Клетки различных тканей и органов растений отличаются неодинаковой способностью к делœению. Существуют регулярно обновляющиеся ткани, клетки которых постоянно делятся (к примеру, меристема, камбий). Наряду с этим имеются специализированные, хорошо дифференцированные клетки, потерявшие способность к делœению.

Делœение клеточного ядра у растительных клеток впервые обнаружил в 1874 году И.Д. Чистяков при развитии спор у хвоща. По предложению В. Шлейхера, делœение ядра получило название кариокинœез, а в 1882 году В. Флемингом было дано подробное описание процесса делœения ядра, приводящего к образованию двух ядер под названием митоз.

Рис. 39. Общая схема митоза:

1 — интерфаза; 2 — профаза; 3 — прометафаза; 4 — метафаза;

5 — анафаза; 6 — телофаза; а — ядерная оболочка; б — хромосомы;

в — центриоли; г — ядрышки.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, митоз это делœение ядра, приводящее к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, как в родительском ядре.

Весь комплекс процессов, в результате которых из одной клетки образуются две новые, называют митотическим циклом.

Следовательно, митотический цикл по времени длится от конца одного до начала другого делœения клетки.

Период времени между двумя делœениями называют интерфазой.

Она состоит из трех периодов: пресинтетического (G1), когда происходит синтез специфических белков и РНК, синтетического (S) – в котором происходит репликация молекул ДНК, образование двух хроматид и постсинтетического (G2) – синтез белка и накопление энергии. Это наиболее продолжительная часть митотического цикла с хорошо заметными 1-2 ядрышками и слабозернистой структурой.

Интерфаза у разных клеток продолжается от 10 ч до 20 дней.

За интерфазой следуют 4 фазы митоза: профаза, метафаза, анафаза и телофаза. Продолжительность митоза от нескольких минут до 2-3 часов.

Профаза. В начале профазы ядро увеличивается в размерах; в нем отчетливо видны спутанные в клубок хромосомы, начавшие конденсироваться. К концу профазы хромосомы укорачиваются, но иногда заметно, что они состоят из двух хроматид. Ядерная оболочка распадается на небольшие фрагменты. Ядрышко – дезинтегрируется. Нуклеоплазма смешивается с гиалоплазмой и образуется миксоплазма. На полюсах клетки образуются белковые нити, растущие к центру. Это самая продолжительная фаза митоза.

Метафаза.В начале метафазы хромосомы достигают максимальной конденсации и передвигаются к экваториальной пластинке клетки. Οʜᴎ хорошо видны в оптический микроскоп. В этой фазе хроматиды отделяются друг от друга и связаны они между собой в области центромеры. Из белковых нитей формируется веретено делœения, состоящее из опорных и тянущих нитей.

medic.oplib.ru

Способы деления клеток - Bio-learn.com

Деление клеток обеспечивает в живой природе важнейшие процессы:

  • размножение одноклеточных организмов;
  • рост и развитие многоклеточных организмов;
  • постоянное обновление тканей и органов;
  • восстановление тканей и органов после повреждений.

На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество наследственного материала может быть увеличено при сохранении постоянства числа клеток. Так, удвоение ДНК иногда не сопровождается разделением цитоплазмы.» Поскольку механизм такого удвоения идентичен механизму редупликации ДНК в митотическом цикле, и оно сопровождается кратным увеличением числа хромосом, это явление получило название эндомитоза. С генетической точки зрения результат эндомитоза следует рассматривать как геномную соматическую мутацию, о чем будет сказано ниже.

Политения заключается в увеличении содержания ДНК в отдельных хромосомах при сохранении их диплоидного числа. И эндомитоз, и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственного материала. Таким образом, в таких клетках в отличие от диплоидных гены повторены более чем 2 раза. Пропорционально увеличению генов увеличивается масса клеток, что, в свою очередь, повышает функциональные возможности органа.

Известно четыре основных способа деления клеток:

  • прямое бинарное деление
  •  амитоз
  •  митоз
  •  мейоз

Прямое бинарное деление характерно для прокариот (бактерий и цианобактерий).

В бактериальной клетке содержится одна кольцевая молекула ДНК. Перед делением клетки ДНК удваивается. Образовавшиеся одинаковые молекулы ДНК прикрепляются к цитоплазматической мембране (ЦПМ). Во время деления ЦПМ врастает между двумя молекулами ДНК и делит клетку пополам. В каждой дочерней клетке оказывается по одной идентичной молекуле ДНК.

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Мейоз — деление клеток эукариот, ведущее к образованию гаплоидных клеток, т.е. уменьшению хромосомного набора в два раза. Мейоз приводит к образованию гамет у животных и спор у растений. При этом из одной материнской диплоидной клетки образуется четыре гаплоидные клетки с разными хромосомными наборами.

bio-learn.com

Как размножается клетка. Рост и размножение клеток

Наверное, нет ни одного более часто изучаемого в рамках школьной программы по биологии понятия, чем клетка. С ней знакомятся в 5 классе на природоведении, затем в 6 рассматривают разновидности и как размножается клетка, ее способы деления. В 7 и 8 классах она изучается с точки зрения растительной, животной и человеческой принадлежности. 9 класс подразумевает рассмотрение внутренних процессов, происходящих в ней, то есть молекулярное строение. В 10 и 11 это клеточная теория, открытие и эволюция.

Программа строится так потому, что именно эти маленькие структуры, "кирпичики жизни", являются самыми важными элементами любого организма. Все жизненные функции, процессы, рост и развитие, становление - все, что связано с жизнью, осуществляется ими и в них. Поэтому в данной статье мы рассмотрим основные моменты размножения, развития клеток и историю их открытия.

Открытие клетки

Эти структурные частицы чрезвычайно малы по размерам. Поэтому для их открытия понадобилось много времени и создание определенной техники. Так, впервые клеточную структуру живой растительной ткани увидел Роберт Гук. Это было в 1665 году. Для того чтобы их рассмотреть, он изобрел первый в мире микроскоп. Данное устройство мало напоминало современные увеличительные приборы. Скорее, было похоже на несколько скомпонованных между собой луп, дающих увеличение.

Используя данный прибор, ученый рассматривал срез пробкового дерева. То, что он увидел, положило начало развитию ряда смежных наук и биологии в целом. Множество плотно прилегающих друг к другу ячеек примерно одинаковой формы и размера. Гук назвал их cella, что означает "клетка".

Впоследствии был сделан ряд открытий, которые позволили знаниям разрастись, накопиться и вылиться в несколько наук, занимающихся их изучением.

  1. 1675 г. - ученый Мальпиги изучал разнообразие клеток по форме и пришел к выводу, что это чаще всего округлые или овальные пузырьки, заполненные жизненным соком.
  2. 1682 г. - Н. Грю подтвердил выводы Мальпиги, а также занимался изучением строения оболочки клетки.
  3. 1674 г. - Антонио ван Левенгук открывает клетки бактерий, а также кровяные структуры и сперматозоиды.
  4. 1802-1809 гг. - Ш. Бриссо-Мирбе и Ж. Б. Ламарк предполагают существование тканей и схожесть животных и растительных клеток.
  5. 1825 г. - Пуркинье открывает ядро в половой клетке птиц.
  6. 1831-1833 гг. - Роберт Броун открывает наличие ядра в растительных клетках и вводит понятие о значимости внутреннего состава, а не клеточной оболочки, как считалось ранее.
  7. 1839 г. - Теодор Шванн делает выводы о том, что все живые организмы состоят из клеток, а также о схожести последних между собой (будущая клеточная теория).
  8. 1874-1875 гг. - Чистяков и Страсбургер открывают способы размножения клеток - митоз, мейоз.

Все дальнейшие открытия в области строения клеток, их функций, многообразия и роли в жизни организмов были совершены достаточно быстро благодаря интенсивному развитию специальной увеличительной и осветительной техники.

Размножение клеток

Каждая клетка в течение жизни совершает целый клеточный цикл - это время ее жизни с момента появления на свет и до смерти (или деления). Причем, совершенно неважно, животная она или растительная. Жизненный цикл одинаков для всех из них, и чаще всего, в конце его клетки размножаются делением.

Конечно, не для всех организмов этот процесс идентичен. Для эукариотов и прокариотов он принципиально различается, также имеются некие отличия и в размножении растительных и животных клеток.

Как размножается клетка? Для этого существует несколько основных способов.

  1. Митоз.
  2. Мейоз.
  3. Амитоз.

Каждый из них представляет собой целый ряд процессов, фаз. Причем все эти процессы характерны именно для многоклеточных организмов, как растительного, так и животного происхождения. У одноклеточных размножение происходит путем простого деления надвое. То есть способы размножения клеток не одинаковы. Существует даже такое явление, как клеточный суицид. Это самоуничтожение клеток вместо процессов деления.

Как размножается клетка, например, бактерий, сине-зеленых водорослей, некоторых простейших? Бесполым путем, самым простым способом: содержимое их клетки удваивается, в клеточной стенке формируется поперечная или продольная перетяжка и одна клетка делится на два совершенно новых, идентичных материнскому, организма.

Данный процесс называется прямым делением клетки. Размножаются им одноклеточные и бактерии, но он не имеет отношения ни к митотическим, ни к мейотическим процессам. Они происходят только в организме многоклеточных живых организмов.

Митоз

В многоклеточных существах содержится миллиарды клеток. И каждая из них стремится завершить свой жизненный цикл, именно оставив потомство, а не умерев. Клетки размножаются делением, однако данный процесс не у всех из них одинаков.

Соматические структуры (к таким относятся все клетки организма, кроме половых) своим способом для размножения выбирают митоз или амитоз. Это очень интересный, емкий и сложный процесс, в результате которого из одной материнской диплоидной клетки (то есть с двойным набором хромосом) образуются две идентичные ей дочерние с таким же диплоидным составом.

Весь процесс включает в себя два основных момента:

  1. Кариокинез - деление ядра и всего его содержимого.
  2. Цитокинез - деление протоплазмы (цитоплазмы и всех клеточных органоидов).

Протекают эти процессы одномоментно, приводя к формированию полноценных материнских копий уменьшенного размера.

Митоз состоит из четырех фаз (профаза, метафаза, анафаза, телофаза) и состояния, предшествующего делению - интерфазы. Рассмотрим каждую подробно.

Интерфаза

Рост и размножение клеток осуществляется в течение всей жизни организма. Однако не все клетки имеют одинаковый срок существования. Какие-то из них погибают через два-три дня (форменные элементы крови), какие-то остаются функционировать всю жизнь (нервные).

Но в жизни каждой клетки большую часть времени сохраняется такое состояние, которое называется интерфазой. Это период подготовки к делению зрелой сформировавшейся клетки, который занимает до 90% времени всего процесса.

Биологический смысл данной стадии в накоплении питательных веществ, РНК и белков, синтезе молекул ДНК. Ведь после деления в каждую дочернюю клетку должно попасть ровно такое количество органоидов, веществ и генетического материала, сколько было в материнской. Для этого должно произойти удвоение всех имеющихся структур, в том числе и нитей ДНК.

В целом, интерфаза происходит в три этапа:

  • пресинтетический;
  • синтетический;
  • постсинтетический.

Результат: накопление питательных элементов, энергии и ДНК молекул для дальнейших процессов деления. Таким образом, данная стадия - это лишь начало того, как размножается клетка в дальнейшем.

Профаза

На данном этапе происходят следующие основные процессы:

  • растворяется ядерная оболочка;
  • исчезают (растворяются) ядрышки;
  • хромосомы становятся видимы в микроскоп за счет скручивания (спирализации) структуры;
  • центриоли расходятся к полюсам клетки, вытягивая и формируя веретено деления.

На этой стадии размножение животных клеток ничем не отличается от такового у всех других.

Метафаза

Данная фаза достаточно короткая, всего около 10 минут. Основа ее в том, что хроматиды выстраиваются по экватору клетки. Ниточки веретена деления одним концом цепляются за центриоль у полюса клетки, а другим за центромеру каждой хроматиды. Между собой генетические структуры уже почти не связаны и поэтому легко готовы к рассоединению.

Анафаза

Самая короткая стадия всего митотического цикла. Длительность составляет около 3 минут. В этот период каждая хроматида уходит к своему полюсу клетки и достраивает себе недостающую половинку, превращаясь в нормального строения хромосому.

Однако для этого образования требуется специальный фермент - теломераза. Именно его накопление шло в интерфазе.

Телофаза

У каждого клеточного полюса появляется свой генетический полноценный материал, который одевается в ядерную оболочку, формируя ядро. Появляются ядрышки. Весь процесс занимает примерно 30 минут. То есть довольно продолжительное время. Это происходит потому, что формирование ядрышек и ядерной оболочки требует больших энергетических затрат, а также наличия строительного материала - питательных веществ (белков, углеводов, ферментов, жиров, аминокислот).

Цитокинез

Данный процесс завершает весь митотический цикл. Протоплазма делится вместе с органоидами строго пополам, и каждая дочерняя особь получает ровно столько же, сколько ее сестра. Затем поперек клетки формируется белковая перетяжка (актиновой природы), которая сдавливает структуру поперек и делит ее на две равные, но меньшие по размерам, по сравнению с материнской, клетки.

На этой стадии есть некоторые отличия животной клетки от того, как размножается клетка растения. Дело в том, что в растительных структурах белка меньше, а актина вообще нет. Поэтому посередине формируется не перетяжка, а перегородка, по обе стороны которой откладывается целлюлоза. Это придает растительной клетке жесткость, формирует каркас в виде клеточной стенки.

Рост и размножение клеток далее идет по пути обычного жизненного цикла: специализация, формирование тканей, затем органов, активная работа и деление, либо смерть.

Половые клетки и их размножение

На вопрос о том, как размножается клетка, ответ может быть дан при уточнении, какая именно. Ведь рассмотренные нами процессы митоза характерны только для соматических структур. Тогда как половые клетки размножаются несколько иным образом, а точнее, мейозом.

Данный процесс является основой таких жизненных функций у животных, как гаметогенез, то есть половое размножение. Развитие половых клеток происходит многостадийно. Поэтому мейоз - еще более сложное и емкое деление, нежели митоз.

Для растительных клеток мейоз - основа спорогенеза, то есть образования половых клеток. Основная биологическая роль мейоза для всех организмов заключается в том, что в результате него образуются четыре гаплоидные (с половинчатым или одинарным набором хромосом) половые клетки. Зачем? Для того, чтобы при оплодотворении (слиянии мужской и женской половых клеток) происходило восстановление диплоидности в новой зиготе (будущем зародыше). Это дает генетическое разнообразие организмам, приводит к комбинации генов, появлению и закреплению новых признаков.

Структура процесса мейоза

Выделяют два основных деления в мейозе: редукционное и эквационное. Каждое из них включает в себя все те же фазы, что и митоз: профаза, метафаза, анафаза и телофаза. Рассмотрим немного подробнее каждое из них.

Редукционное деление

Суть: из одной диплоидной клетки образуются две гаплоидные, с половинчатым набором хромосом. Фазы:

  • профаза I;
  • метафаза I;
  • анафаза I;
  • телофаза I.

На каждой из фаз повторяются все те же самые преобразования, что и на соответствующих стадиях в митозе. Однако одно отличие все же есть: в интерфазе не происходит удвоение ДНК, она лишь делится пополам, и все. Поэтому в каждую дочернюю клетку попадает лишь половина генетической информации. Это начальное размножение животных клеток, а также растительных, относящихся к половым.

Эквационное деление

Второе деление мейоза, в результате которого образуется еще по две клетки от каждой предыдущей. Теперь уже имеется четыре одинаковых гаплоидных аналога, которые и становятся половыми клетками животных или растений. Стадии эквационного деления: профаза II, метафаза II, анафаза II, телофаза II.

Таким образом, вопрос о том, как размножается клетка, имеет достаточно сложный и емкий ответ. Ведь эти процессы, как и все другие, происходящие в живых существах, очень тонкие и состоят из множества стадий.

fb.ru

Образовательные ткани. Процесс деления клетки.

1. Митоз и его значение для растения.

2.    Профаза. 3. Метафаза. 4. Анафаза. 5. Телофаза.

6. Понятие о тканях. Общие особенности тканей растений.

7. Меристемы, их цитологические особенности и значение.

8. Классификации меристем

Митоз и его значение

Обычно деление клетки, как у животных, так и у растений, происходит путём сложного деления, называемого митозом.

Митоз – основной способ деления эукариотических клеток. Он подразделяется на ряд фаз: профаза, метафаза, анафаза, телофаза.

Профаза (2n4с). Это самая продолжительная фаза митоза. Её началом принято считать момент, когда заканчивается спирализация хромосом в ядре. В это время хромосомы ста­новятся различимы в световой микроскоп. Становится заметно, что каждая хромосома состоит из двух хроматид, соединённых первичной перетяжкой, или центромерой. Затем разрушается ядерная оболочка и исчезает ядрышко.

Метафаза (2n4с). Хромосомы выстраиваются на экваторе клетки совершенно случайным образом, образуя метафазную, или экваториальную, пластинку. Хорошо видно, что каждая хромосома состоит из двух сестринских хроматид, слегка обособленных друг от друга по длине хромосомы, но соединённых в области центромеры. От хромосом тянутся плазматические нити к двум точкам, расположенных в противоположных частях клетки. Эти точки называются полюсами клетки.

Анафаза (2n4с). Центромеры хромосом разрушаются, и хроматиды, составляющие хромосому, становятся дочерними хро­мосомами. Все дочерние хро­мосомы одновременно расходятся к полюсам клетки.

Телофаза – последняя стадия митоза (2n4с®2n2с). Все процес­сы в телофазе напоминают прокручивающуюся назад профазу: хромосо­мы деспирализуются, формируется ядерная оболочка, появляются ядрышки. Затем наступает цитокинез – деление цитоплазмы. У растительных клеток она делится от периферии к центру.

 В результате митоза из одной клетки образуются две диплоидные клетки совер­шенно одинаковые по содержанию наследственного материала, а зна­чит, имеющие одинаковое строение и выполняющие одинаковые функции.

 Период между предыдущим и последующим делением клетки называется интерфазой. В это время клетка самообновляется, в ней происходит активный обмен веществ, накопление белков, а главное, синтез ДНК. Именно в интерфазе количество ДНК увеличивается в два раза (2n4с®2n2с). Это позволит дочерним клеткам получить одинаковую наследственную информацию.

Ткани растений. Меристемы.

Появление тканей у высших растений – крупнейший ароморфоз, позволивший растениям адаптироваться к обитанию в более жёсткой, чем вода, внешней среде.

 Ткани растений не столь специализированы как ткани животных, т. е. они многофункциональны и могут состоять из элементов, имеющих разное строение.

 В ходе онтогенеза ткани могут давать начало другим тканям или перерождаться. Это объясняется колоссальной способностью растительных тканей к регенерации.

В растении в зависимости от степени дифференцировки выделяют два вида тканей: образовательные ткани (меристемы) и постоянные ткани. Клетки постоянных тканей достигли окончательной дифференцировки. К ним относятся проводящие, механические, покровные, основные и выделительные ткани.

Ткани, состоящие из одного типа клеток, получили название простых, а состоящие из разных типов – сложных, или комплексных.

 Меристемы занимают ничтожный объём в теле растения – 0,1% общей массы. Инициальные клетки меристем задерживаются на эмбриональной стадии развития в течение всей жизни растения, а их производные постепенно дифференцируются и превращаются в клетки различных постоянных тканей.

Меристемы присущи только растениям. Они обеспечивают обновление и рост всего организма в ходе всего онтогенеза. В этой связи возраст разных тканей и органов в пределах одного организма неодинаков. Эта особенность растений (рост в течение всей жизни) обусловлена их прикреплённым образом жизни и автотрофным типом питания.

Клетки меристем очень слабо дифференцированы, поэтому им присущи следующие черты:

1)    клетки мелкие и плотно упакованные (межклетников нет)

2)    клеточные стенки тонкие первичные

3)    цитоплазма вязкая, в ней активно идут процессы биосинтеза белка и дыхания

4)    практически все органоиды слабо дифференцированы

5)    нет единой центральной вакуоли, вакуолярная система представлена группой мелких пузырьков

6)    клетки способны к многократным делениям

В меристеме можно выделить две группы клеток:

  • инициальные клетки – небольшая группа клеток (у высших растений 8-10), способных в течение всей жизни растения делиться митозом. Для растений, обитающих в условиях сезонного климата, инициальные клетки находятся либо в состоянии активной жизнедеятельности (в вегетационный период), либо в состоянии покоя (неблагоприятный период).
  • производные клетки – образовались от инициальных, делятся митозом 3-5 раз, а затем эти клетки переходят к процессу растяжения и дифференцировки, постепенно превращаясь в постоянные ткани.

Топографическая классификация меристем

  • апикальные (верхушечные) меристемы располагаются на верхушках побегов и корней, обеспечивая нарастание их в длину.

Вакуоли многочисленные, мелкие, но под световым микроскопом обычно заметны. Пластид и митохондрий мало, и они мелкие. Эргастические вещества отсутствуют.

Если растение теряет апикальную меристему, то рост органа в длину прекращается, но это может стимулировать рост боковых органов.

  • вставочные (интеркалярные) расположены у снования междоузлий побегов, у основания тычинок, в основании листьев злаков.
  • боковые (латеральные)  располагаются параллельно боковым поверхностям осевых органов (стеблей и корней) и обеспечивают их утолщение. К боковым меристемам относят прокамбий, камбий, перицикл, феллоген.

Латеральные меристемы располагаются параллельно боковым поверхностям осевых органов, нередко образуя цилиндры, на поперечных срезах имеющих вид колец. Гланейшие латеральные меристемы – камбий и феллоген. Эти меристемы обеспечивают нарастание стеблей и стволов в толщину, образуя вторичные ткани и формируя вторичное тело растения. Камбий даёт начало вторичным производным тканям – вторичной ксилеме и флоэме, а феллоген – перидерме.

Клетки боковых меристем различны по величине и форме. Они примерно соответствуют клеткам тех постоянных тканей, которые из них в дальнейшем возникают. Так, в камбии встречаются как паренхимные, так и прозенхимные инициали. Из паренхимных инициалей возникают паренхимные элементы проводящих тканей, а из прозенхимных – проводящие элементы.

  • раневые меристемы образуются в местах повреждения тканей и органов и дают начало каллусу. Это особая ткань, состоящая из однородных паренхимных клеток, прикрывающих место поражения.

Классификация меристем по происхождению

Первичная меристема – возникает на самых первых этапах онтогенеза растений, берут своё начало от делящейся зиготы. К ним относятся апикальные меристемы, прокамбий, и интеркалярные меристемы. Апикальные меристемы функционируют в течение всей жизни растения, все остальные меристемы живут определённый промежуток времени и в итоге полностью превращаются в постоянные ткани.

Вторичные меристемы – формируются на более поздних этапах онтогенеза, чем первичные. Они возникают частично из первичных меристем, а частично из постоянных тканей. К ним относятся камбий, феллоген и раневые меристемы.

Способы закладывания межклеточной перегородки.

Если межклеточная перегородка закладывается под прямым углом к поверхности органа – это антиклинальное деление клетки. При этом образуются структуры пластинчатого типа (листовые пластинки цветковых растений).

Если межклеточная перегородка закладывается параллельно ближайшей поверхности органа – перериклинальное деление. Оно характерно для латеральных меристем, за счёт таких делений происходит утолщение осевых органов.

Если межклеточная перегородка закладывается касательно окружности – это тангециальное деление клетки. Клеточные деления при этом происходят, по сути, во всех плоскостях, и в результате образуется массив меристемы, напоминающий шар. Так формируется эндосперм семян.

Типы роста клеток меристем в процессе дифференцировки

Симпластический – рост оболочек смежных клеток происходит согласованно и их связь через плазмодесмы не нарушается (характерен для органов, удлиняющихся в период первичного роста).

Интрузивный (интерпозиционный) – рост отдельных клеток не согласован, одни клетки могут внедряться в пространство, образовавшееся между другими клетками (камбиальные инициали, склеренхимные волокна, трахеиды).

Ткани растений.

Ткани – это системы клеток, структурно и функционально сходные друг с другом и обычно имеющие общее происхождение. Тканей нет только у печёночных мхов.

Большинство клеток зародыша обладают меристематической активностью, т. е. способностью к делению. Часть этих клеток сохраняет эту способность в течение всей жизни. Это инициальные клетки, или инициали.

Клетки, постоянно возникающие в процессе деления инициалей, называются производными. Производные клетки делятся обычно один или два раза и начинают дифференцироваться. Дифференцировка касается, прежде всего, качественных особенностей клеток, но происходит на фоне различных количественных процессов, в частности роста. В результате меристемы дают начало постоянным тканям, клетки которых лишены способности к делению. Как правило, дифференцировка не обратима, и только когда специализация зашла не слишком далеко, клетки постоянных тканей могут вновь приобретать меристематическую активность. На ход дифференцировки оказывают влияние фитогормоны.

Внутреннее строение листа формируется только за счёт первичных меристем, все ткани листа первичные.

Основную массу листа, располагающуюся между верхней и нижней эпидермой, занимает хлоренхима, которая в листе получила особое название – мезофилл.

Цитологические особенности мезофилла: клеточные стенки всегда тонкие (либо первичные, либо с незначительными вторичными изменениями), наличие плазмодесм, наличие хлоропластов (их количество и размеры зависят от освещенности).

 Система разветвлённых проводящих пучков снабжает мезофилл водой и растворами минеральных солей, а также обеспечивает отток органических веществ, образовавшихся в процессе фотосинтеза.

students-library.com

Прямое деление клеток, или амитоз

Амитоз иногда ещё называют простым делением.

Определение 1

Амитоз – прямое деление клетки путём перетяжки или инвагинации. При амитозе не происходит конденсация хромосом и не образуется аппарат деления.

Амитоз не обеспечивает равномерного распределения хромосом между дочерними клетками.

Обычно амитоз свойствен стареющим клеткам.

Во время амитоза ядро клетки сохраняет строение интерфазного ядра, а сложной перестройки всей клетки, спирализации хромосом, как во время митоза, не происходит.

Нет никаких доказательств равномерного распределения ДНК между двумя клетками при амитотическом делении, потому считают, что ДНК при таком делении может распределятся между двумя клетками неравномерно.

Амитоз встречается в природе достаточно редко, в основном у одноклеточных организмов и у некоторых клеток многоклеточных животных и растений.

Типы амитоза

Различают несколько форм амитоза:

  • равномерный, когда образуются два равных ядра;
  • неравномерный – образуются неодинаковые ядра;
  • фрагментация - ядро распадается на множество мелких ядер, одинаковой или нет величины.

Первые два типа деления вызывают образование двух клеток из одной.

В клетках хряща, рыхлой соединительной и некоторых других тканях происходит деление ядрышек с последующим делением ядра путём перетяжки. У двухъядерной клетки появляется кольцевая перетяжка цитоплазмы, которая при углублении вызывает полное деление клетки на две.

Пример 1

В хряще появляются изогенные группы, т. е. группы, происходящие из одной клетки. Такие клетки специализированы для выполнения определённых функций в организме, однако лишены возможности митотически делиться.

В процессе амитоза в ядре происходит деление ядрышек с последующим делением ядра перетяжкой, цитоплазма так же делится перетяжкой.

Амитоз-фрагментация вызывает образование многоядерных клеток.

В некоторых клетках эпителия, печени наблюдается процесс деления ядрышек в ядре, после чего всё ядро перешнуровывается кольцевой перетяжкой. Процесс этот заканчивается образованием двух ядер. Такая двухъядерная или многоядерная клетка уже не делится митотически, через некоторое время она стареет или гибнет.

Замечание 1

Таким образом, амитоз – это деление, которое происходит без спирализации хромосом и без образования веретена деления. Так же неизвестно синтезируется ли перед началом амитоза синтез ДНК и как происходит распределение ДНК между дочерними ядрами. Происходит ли предыдущий синтез ДНК перед началом амитоза и как она распределяется между дочерними ядрами – неизвестно. При делении определённых клеток иногда митоз чередуется с амитозом.

Биологическое значение амитоза

Некоторые учёные считают этот способ деления клеток примитивным, другие относят его к вторичным явлениям.

Амитоз по сравнению с митозом встречается значительно реже у многоклеточных организмов и может быть отнесён к неполноценному способу деления клеток, утративших способность к делению.

Биологическое значение процессов амитотического деления:

  • процессы, обеспечивающие равномерное распределение материала каждой хромосомы между двумя клетками, отсутствуют;
  • образование многоядерных клеток или увеличение количества клеток.

Определение 2

Амитоз – это своеобразный тип деления, который иногда можно наблюдать при нормальной жизнедеятельности клетки, а в большинстве случаев, когда функции нарушаются: влияние излучения или действие других вредных факторов.

Амитоз свойствен высокодифференцированным клеткам. В сравнении с митозом он встречается реже и играет второстепенную роль в клеточном делении большинства живых организмов.

spravochnick.ru

Ответы@Mail.Ru: способы деления клетки

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка) , прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами) .

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) . Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК) , зиготена (конъюгация гомологичных хромосом, образование бивалентов) , пахитена (кроссинговер, перекомбинация генов) , диплотена (выявление хиазм, 1 блок овогенеза у человека) , диакинез (терминализация хиазм).

otvet.mail.ru