Лекарственные растения и травы

Меню сайта

Шпаргалка: Поступление и превращение азота в растениях. Превращение азота в растении


Поступление и превращение азота в растениях

Поступление и превращение азота в растениях

Поглощение азота растением

Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растениянаибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.

В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.

Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до Nh3 , после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:

1)восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.

Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина Nh3OH и, наконец, до аммиака Nh4. Восстановление нитратов до Nh4-и Nh3-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.

Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:

Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.

При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.

Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:

Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп Nh3 в растении для синтеза аминокислот.

Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:

Усвоение органических форм азота

Стерильные культуры покрытосеменных растений

Долгое время оставался нерешенным вопрос о возможности усвоения корневой системой растений органических форм азота. Вопрос этот можно было решить только в стерильных культурах, так как в нестерильных условиях развились бы бактерии, которые своими ферментами разложили бы органический азот и превратили бы его в минеральные формы. Корневая система высших растений находилась в простерилизованном питательном растворе, содержащем органический азот. Семена растений стерилизовались бромной водой или раствором сулемы.

Опыты показали, что хотя аминокислоты и могут быть усвоены зеленым растением, но это усвоение идет крайне медленно, и растения, выращенные на этих соединениях, всегда отстают в росте от растений, получивших минеральные формы азота.

Насекомоядные растения. Большой интерес представляют высшие растения со своеобразным типом азотистого питания. Сюда относятся некоторые сапрофиты, паразиты, полупаразиты и, наконец, насекомоядные растения. Своеобразие азотистого, а у некоторых форм и углеродного питания возникло в процессе эволюции под влиянием условий существования и естественного отбора. Таким образом, в отличие от грибов и бактерий, где гетеротрофное питание азотом имеет первичный характер, у этих растений оно возникло вторично. Наиболее интересную группу растений, питающихся органическим азотом, составляют насекомоядные растения.

К насекомоядным растениям принадлежит примерно 500 видов растений. Все они обитатели болот. Несмотря на богатство болотных почв органическим веществом, находящийся в этих почвах органический азот недоступен для растений. Болотные почвы также очень бедны и минеральными солями (фосфор, калий и др.). Все насекомоядные растения имеют хлорофилл, т.е.

Ознакомимся с некоторыми представителями насекомоядных растений.

Росянка - многолетнее растение, растет на сфагновых болотах. Каждый год на поверхности мха образуется новая розетка листьев росянки. Листья снабжены многочисленными железистыми волосками (их часто называют щупальцами), выделяющими липкую жидкость, к которой и прилипают мелкие насекомые - комары и мелкие мухи. При прилипании насекомого пластинка листа свертывается. Особенно хорошо это свертывание пластинки видно у вида росянки длиннолистной. После того как насекомое прилипнет к листу, в растении начинается выделение гидролитических ферментов - протеаз, разлагающих белки, и муравьиной кислоты. Кислота способствует работе фермента протеазы, и, кроме того, она действует как яд на бактериальную флору. Последнее очень важно, так как пышное развитие флоры гнилостных бактерий могло бы сказаться отрицательно на самом растении.

Ботаник Фрэнсис Дарвин, сын Чарльза Дарвина, выяснил благоприятное влияние питания росянки насекомыми. Он взял шесть сосудов с растениями росянки и разделил каждый из них перегородкой. По одну сторону перегородки росянки получали мясо, а по другую сторону им его не давали.

В конце опыта выяснилось, что на 100 цветков у контрольной группы, которые не получали мяса, приходится 165 цветков у получавших мясо. Иными словами, репродуктивная способность растений росянки, питавшихся мясом, сильно возрастала.

Большой интерес представляет обитающая в болотистых водоемах пузырчатка . Помимо рассеченных листьев, она несет еще характерные пузыревидно измененные листья. В такой пузырек проникают мелкие рачки и уже не могут выбраться наружу, так как створка, сквозь которую проник рачок, открывается в одну сторону.

Из других насекомоядных растений можно отметить кувшиноносы ( непентес) из тропиков Мадагаскара и Явы: австралийский цефалотус и американскую сарацению, листья которых имеют вид кувшинов, куда и попадают насекомые. Эти растения также выделяют гидролизирующие белки-ферменты и переваривают насекомых. У цефалотуса выделения ферментов не происходит.

Многие насекомоядные растения привлекают к себе насекомых яркой окраской листьев, а некоторые выделяют сладкий сок. Так, например, у кувшиноноса в верхней части кувшинчиков имеются железки, выделяющие сладкий сок.

Особенно интересна венерина мухоловка, растущая на болотах штата Каролина в Северной Америке. Это небольшое растение активно захлопывает створки листьев, когда насекомое заденет чувствительный волосок его листа.

Симбиоз и паразитизм. Особую группу покрытосеменных растений составляют сапрофиты. Встречаются они на богатой органическими веществами почве, в лесах, среди разлагающейся лесной подстилки. К ним относятся такие растения, как подъельник и орхидея гнездовка. Оба эти растения бесцветны. Правда, в листьях гнездовки содержится небольшое количество хлорофилла а, хлорофилла б у нее совсем не найдено.

Подъельник - растение-сапрофит, лишенное хлорофилла. По-видимому, гриб снабжает подъельник углеводами и азотистыми веществами из малодоступного для растения перегноя, очевидно, получая от растения физиологически активные вещества (витамины), а также, возможно, и аминокислоты. Выращивая сосну в стерильных условиях и затем заражая ее определенным видом гриба (эктотрофная микориза), удалось экспериментально доказать наличие связи между высшим растением и грибом. При наблюдениях за растениями и грибами в природной обстановке выявилась тесная связь между определенными грибами и высшими растениями. По меткому выражению одного ученого, гриб кортинариус следует за березой, как "дельфин за кораблем". Большинство наших съедобных грибов образуют эктотрофную микоризу и тесно связано с определенными деревьями. Это давно отмечено в названиях грибов.

mirznanii.com

Поступление и превращение соединений азота в растениях

Азот составляет около 1,5% сухой массы растений. Значение азота определяется тем, что он входит в состав важных органических веществ, таких, как аминокис­лоты и белки, нуклеотиды и нуклеиновые кислоты, фосфолипиды, алкалоиды, многие витамины, фитогормоны (ауксины и цитокинины). Азот содержится в соединениях группы порфиринов, которые лежат в основе хлорофилла и цитохромов, многочисленных коферментов, в том числе НАД и НАДФ. Формы азота в окружающей растения среде разнообразны: в атмосфере — газообразный азот и пары аммиака, в почве — неорганические формы азота (азот аммиака, аммония, нитратов, нитритов) и органические (азот аминокислот, ами­дов, белка, гумуса и др.). Такое разнообразие форм азота ставило перед исследо­вателями вопрос об источниках азотного питания для растительного организма. В растениях соединения азота также находятся в разнообразной форме. В силу этого для понимания особенностей азотного питания требовалось установить основные этапы превращения его соединений. Данная проблема имеет исклю­чительное практическое значение. Так, наиболее часто в естественных условиях встречаются растения, содержащие недостаточное количество азота. Между тем рациональное применение азотных удобрений требует обязательного знания осо­бенностей азотного обмена. Большая роль в выяснении всех указанных вопро­сов принадлежит работам академика Д.Н. Прянишникова и его учеников. Французский ученый Ж.Б. Буссенго установил, что при выращивании расте­ний на прокаленном песке они содержат столько азота, сколько было в семени. Это доказало, что высшие растения не могут усваивать азот атмосферы. Таким образом, несмотря на то, что в атмосфере содержится около 80% азота, боль­шинство растений не усваивают его. Однако есть растения, обогащающие почву азотом за счет атмосферы. К ним относятся представители семейства Бобовые. Г. Гельригель установил, что на корнях бобовых растений образуются вздутия — клубеньки, заполненные живыми клетками бактерий. Эти бактерии живут в сим­биозе с высшими растениями и фиксируют азот атмосферы. Дальнейшие иссле­дования показали, что фиксировать (усваивать) молекулярный азот атмосферы могут некоторые прокариотические организмы.

В этом разделе:

- Особенности усвоения молекулярного азота

- Питание азотом высших растений. азотный обмен растений

fizrast.ru

Поступление и превращение азота » СтудИзба

Поступление и превращение азота в растениях

  1. Физиологическая роль азота в растительном организме.
  2. Особенности усвоения молекулярного азота растениями. Азотофиксирующие микроорганизмы.
  3. Химизм фиксации атмосферного азота.
  4. Азотный обмен растений.

 

Физиологическая роль азота в растительном организме.

Азот был открыт в 1772 г шотландским химиком, ботаником и врачом Д. Резерфордом как газ, не поддерживающий дыхание и горение (азот в переводе «нежизненный). Для растений азот – дефицитный элемент. Азот составляет 1,5 % сухой массы растений. Он входит в состав аминокислот, белков, нуклеиновых кислот, фосфолипидов, алкалоидов, витаминов, фитогормонов. Азот содержится в соединениях группы порфиринов, которые лежат в основе хлорофилла и цитохромов, многочисленных коферментов, в том числе НАД и НАДФ. Растения могут поглощать только минеральный азот и никогда не выделяют азотистые соединения как продукты обмена.

При недостатке азота тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновременно уменьшается ветвление корней. Листья сначала бледнеют, затем в следствии гидролиза белков и разрушения хлорофилла приобретают желтые, оранжевые и красные тона. При длительном голодании наблюдается некроз тканей. Азотное голодание приводит к сокращению вегетационного роста и более раннему созреванию семян.

 

Особенности усвоения молекулярного азота растениями. Азотофиксирующие микроорганизмы

Азот – один из наиболее широко распространенных элементов в природе. Основными его формами на Земле являются связанный азот литосферы и газообразный молекулярный азот (N2) атмосферы, составляющий 75,6 % воздуха по массе. Однако молекулярный азот не усваивается растениями и может переходить в доступную форму для них только благодаря деятельности микроорганизмов-азотофиксаторов. Организмы, способные к усвоению азота воздуха, можно разделить 3 группы: 1) симбиотические азотфиксаторы - микроорганизмы, которые усваивают азот атмосферы, находясь в симбиозе с высшим растением; 2) не симбиотические азотфиксаторы - микроорганизмы, свободно живущие в почве и усваивающие азот воздуха; 3) ассоциативные азотфиксаторы - микроорганизмы, обитающие на поверхности корней, т. е. живущие в ассоциации с высшими растениями.

Симбиотические азотфиксаторы. Важное значение имеют бактерии живущие в клубеньках корней бобовых растений (клубеньковые бактерии), относящиеся к роду Rhizobium. Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скапливаются вокруг корневых волосков, которые при этом скручиваются. Осуществление контакта микроорганизмов с растением происходит за счет лектин-углеводного узнавания растения микроорганизмом. Суть этого в том, что лектин корневых волосков растений прочно связывается с углеводом поверхности бактерий. Бактерии, внедряются в корневой волосок, в виде сплошного тяжа (т. н. инфекционные нити), состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Клетки перицикла начинают усиленно делиться. Возможно, бактерии выделяют гормональные вещества типа ауксина и именно это является причиной разрастания тканей, образуются вздутия — клубеньки. Клетки клубеньков заполняются быстро размножающимися бактериями. Ткань клубеньков, заполненная бактериями, приобретает розовую окраску, так как после заражения в клетках бактерий образуется пигмент, сходный с гемоглобином, - леггемоглобин. Этот пигмент связывает кислород воздуха и предохраняет фермент нитрогеназу от воздействия кислорода. При отсутствии леггемоглобина азот не усваивается. Информация об образовании леггемоглобина содержится в ДНК клетки высшего растения. Синтезируется клетками растения-хозяина и образуется после заражения.

Взаимоотношения между растениями и клубеньковыми бактериями обычно характеризуют как симбиоз. Однако на первых этапах заражения бактерии питаются целиком за счет растения, т. е. практически паразитируют на нем. В этот период рост зараженных растений даже несколько тормозится. В дальнейшем азотфиксирующая способность бактерий увеличивается, и они начинают снабжать азотистыми веществами растение-хозяина, вместе с тем бактерии получают от высшего растения углеводы (симбиоз). По мере дальнейшего развития наступает этап, когда растение паразитирует на клетках бактерий, потребляя все образующиеся там азотистые соединения. В этот период часто наблюдается растворение (лизис) бактериальных клеток.

Благодаря деятельности клубеньковых бактерий часть азотистых соединений из корней бобовых растений диффундирует в почву, обогащая ее азотом. Посев бобовых растений ведет к повышению почвенного плодородия. Гектар бобовых растений в симбиозе с бактериями может перевести в связанное состояние от 100 до400 кг азота за год.

Существуют и другие виды высших растений, у которых наблюдается симбиоз с микроорганизмами. Так, маленький водный папоротник азолла находится в симбиотических отношениях с азотфиксирующими цианобактериями. Азолла способна фиксировать до 0,5 кг азота на га в сутки. Некоторые деревья и кустарники (например, ольха, облепиха, лох) имеют в качестве симбионтов бактерии из рода актиномицеты.

Не симбиотические азотфиксаторы (свободноживушие бактерии — азотфиксаторы). Сейчас известен ряд видов Azotobacter. Свободноживушие азотфиксаторы могут быть факультативными аэробными или факультативными анаэробными. Для того чтобы эти микроорганизмы осуществляли процесс фиксации азота, необходимо присутствие молибдена, железа и кальция. Свободно живущие азотфиксаторы усваивают в среднем около 1 г азота на 1 м2 в год. Усваивать атмосферный азот способны и многие другие бактерии, например цианобактерии, вызывающие цветение пресных и океанических водоемов. В ряде стран их разведение практикуется на рисовых полях.

Ассоциативные азотфиксаторы. Ассоциативные взаимоотношения характерны для ризосферных микроорганизмов, т. е. живущих на поверхности корневой системы растений. Последовательность взаимоотношений с растением-хозяином ассоциативных азотфиксаторов имеет определенное сходство с симбиотическими организмами: лектин-углеводное узнавание и этап установления прочных связей. Отсутствует только этап образования клубеньков. Эффективность азотфиксации ассоциативной микрофлорой меньше по сравнению с симбиотической, но ассоциативные азотфиксаторы продуцируют гормоны роста растений и обладают другими свойствами, положительно влияющими на рост и развитие растений (защита от фитопатогенов, разрушение токсических веществ). Наиболее изучены из этой группы микроорганизмы из рода азоспирилл (Azospirillum). Они колонизируют корни злаков.

 

Химизм фиксации атмосферного азота.

Конечным продуктом фиксации азота является аммиак. В процессе восстановления азота до аммиака участвует мультиферментный комплекс - нитрогеназа. Нитрогеназа состоит из двух компонентов: MoFe-белок и Fe-белок. MoFe-белок содержит молибден, железо и серу и осуществляет связывание и восстановление азота. Fe-белок содержит железо и серу, участвует в транспорте электронов от их доноров (ферредоксин) на MoFe-белок.

 

 

Источником протонов и электронов для восстановления азота служит дыхательная электрон-транспортная цепь. Это указывает на связь усвоения азота атмосферы с процессами дыхания и фотосинтеза (источника углеводов). Для восстановления N2 до Nh4 требуется шесть электронов, согласно уравнению:

Процесс требует АТФ как источника энергии: для восстановления одной молекулы N2 требуется не менее 12 молекул АТФ. Для работы нитрогеназы требуются анаэробные условия. Вместе с тем в клетках высшего растения кислород необходим для поддержания дыхания. В связи с этим роль леггемоглобина заключается в связывании О2 в организме бактерий и создании условий для работы нитрогеназы.

Для нормального протекания процесса азотофиксации необходимы Мо, Fe и Со, поскольку Мо и Fe входят в состав фермента нитрогеназы. Молибден выполняет структурную функцию, поддерживая конформацию нитрогеназы, каталитическую, участвуя в связывании азота и переносе электронов, а также индуцирует синтез нитрогеназы. Кобальт входит в состав витамина В12, который вовлекается в процесс биосинтеза леггемоглобина.

Для свободноживущих фотосинтезирующих организмов (цианобактерии, серные бактериями) донором протонов и электронов может быть или вода, или сероводород.

 

Азотный обмен растений

Высшие растения поглощают соединения азота из почвы, в виде нитратов и аммиака. Корневая система растений хорошо усваивает нитраты, которые после ферментативного восстановления до нитритов превращаются в аммиак. Восстановление идет через ряд этапов при участии фермента нитратредуктазы.

 

  NO3-   NO2-   Nh3OH    →    Nh4

нитрат                                        нитрит                          гидроксиламин        аммиак

 

Для восстановления нитратов необходимо присутствие донора водорода и электронов, которыми являются восстановленные никотинамиды (НАДФН2 или НАДН2), поставщиком этих соединений является процесс дыхания. Большое влияние на восстановление нитратов оказывает свет, так как используются продукты образующиеся в процессе нециклического фотофосфорелирования (НАДФН2 и АТФ), процесс стимулируется при освещении синим светом.

Восстановление нитратов у растений может осуществляться и в листьях, и в корнях, однако относительная доля участия этих органов в редукции нитратов у растений разных видов сильно варьирует. По этому признаку растения подразделяют на три основные группы:

1. Растения, практически полностью восстанавливающие нитраты в корнях и транспортирующие азот к листьям в органической форме (черника, клюква).

2. Растения, практически не проявляющие нитратредуктазной активности в корнях и ассимилирующие нитраты в листьях (дурнишник, хлопчатник, свекла, марь).

3. Растения, способные поддерживать активность нитратредуктазы и в листьях, и в корнях. Это наиболее многочисленная группа, к которой относится большинство травянистых растений, в том числе злаковые, бобовые, многие технические и сельскохозяйственные культуры.

Ассимиляция нитратов в листьях на свету тесно связана с процессом фотосинтеза. Реакции фотосинтеза используются как источник АТФ для синтеза нитрат- и нитритредуктазы и транспорта нитратов, а также как источник восстановителей и субстрата для связывания конечного продукта восстановления – аммиака.

Аммиак также может служить источником азотного питания для растений, при этом он поступает в растения даже быстрее чем нитраты. Накопление аммиака в клетках приводит к нежелательным последствиям, растения обладают способностью обезвреживать аммиак, присоединяя его к органическим кислотам с образованием амидов (глутамина и аспарагина). Это позволяет разделить растения на амидные, образующие аспарагин и глутамин, и аммиачные, образующие соли аммония.

Образование амидов в растении начинается в процессе дыхания, где в качестве промежуточных продуктов образуются органические кислоты α-кетоглутаровая и щавелевоуксусная. Эти кислоты в результате прямого восстановительного аминирования присоединяют аммиак.

 

HOOC∙Ch3Ch3∙CO∙COOH + Nh4 + HАДН2 ↔ HOOC∙Ch3∙Ch3CH∙Nh3COOH + h3O + НАД

α-кетоглутаровая кислота                                          глутаминовая кислота

 

HOOC∙Ch3∙CO∙COOH + Nh4 + HАДН2 ↔ HOOC∙Ch3∙CH∙Nh3COOH + h3O + НАД

щавелевоуксусная кислота                               аспарагиновая кислота

 

Глутаминовая и аспарагиновая кислоты, присоединяя еще одну молекулу аммиака, дают амиды – глутамин и аспарагин. В реакциях образования амидов необходима энергия АТФ и присутствие ионом магния, для активации сентетаз.

 

 

Роль амидов в растении разнообразна. Это не только форма обезвреживания аммиака, это и транспортная форма азотистых соединений, обеспечивающих отток их из одного органа в другие. Амиды являются материалом для построения многих других аминокислот в процессах переаминирования.

Синтез белка. Для нормального синтеза белка в растительном организме нужны следующие условия: 1) обеспеченность азотом; 2) обеспеченность углеводами; 3) высокая интенсивность процессов дыхания и фосфорелирования; 4) присутствие нуклеиновых кислот: ДНК и РНК; 5) рибосомы; 6) белки-ферменты катализаторы синтеза белка; 7)ряд минеральных элементов (магний, кальций).

Образованием белка заканчивается прогрессивная ветвь азотистого обмена в растениях по схеме Прянишникова.

 

Органические кислоты → аминирование → аминокислоты (аспарагиновая, глутаниновая, α-кетоглутаровая, щавелевоуксусная) + аммиак → глутамин и аспарагин → аминокислоты → белки.

 

Вторая половина схемы показывает последовательность в процессе распада белков (регрессивная ветвь азотистого обмена). Белки распадаются до аминокислот, далее до аммиака, он вновь обезвреживается в виде амидов (аспарагин и глутамин). На основе этих соединений образуются аминокислоты, которые идут на построение новых белков

 

Белки → аминокислоты → аммиак → аспарагин и глутамин → аминокислоты →белки.

 

studizba.com

5.2. Азотные удобрения

5.2.1. Роль азота в питании растений. Превращение азота в растении

Как химический элемент азот был открыт Резерфордом в 1722 г., но название ему дал А. Лавузье в 1777 г. Название происходит от греческого α – отрицательная частица – и zoo– жизнь – «не поддерживающий жизни», так как азот не поддерживает дыхания и горения. Позже было установлено, что азот – один из основных элементов, необходимых растениям. Он входит в состав аминокислот, всех простых и сложных белков, нуклеиновых кислот, играющих исключительно важную роль в обмене веществ в растениях, и передаче наследственных свойств. Азот содержится в хлорофилле, фосфатидах, алкалоидах, ферментах и во многих других органических веществах растительных клеток. Без азота рост и развитие растений невозможны.

Основными источниками азота для растений являются органические и минеральные удобрения, биологический азот, накапливаемый клубеньковыми бактериями и свободноживущими микроорганизмами, а также азот, поступающий с атмосферными осадками и семенами. Главные химические соединения, из которых растения усваивают азот – соли азотной кислоты (нитраты) и соли аммония. В естественных условиях растения потребляют нитрат-ион и катион аммония, находящиеся в почвенном растворе и в обменно-поглощенном почвенном коллоидами состоянии. Поступившие в растения минеральные формы азота проходят сложный цикл превращений, в конечном итоге включаясь в состав органических азотистых соединений – аминокислот, амидов и, наконец, белков.

Нитраты и нитриты (азотнокислые и азотистокислые соли и эфиры) не способны вступать в реакцию с кетогруппами органических карбоновых кислот, поэтому для образования аминокислот они восстанавливаются в тканях растений до аммиака. Если растения содержат достаточное количество углеводов, то нитраты восстанавливаются до аммиака еще в корнях. Процесс ферментативного восстановления нитратов, происходящий в растениях благодаря окислению углеводов, идет через ряд промежуточных соединений и катализируется несколькими ферментами:

HNО3→HNО2→ (HNO)2→NН2ОН →NН3.

нитрат нитрит гипонитрит гидроксиламин аммиак

На первой стадии процесса нитраты под действием фермента нитратредуктазы восстанавливаются до нитритов:

HNО3+h3→HNО2+h3О.

Далее при участии фермента нитритредуктазы нитрит восстанавливается до гипонитрита:

2HNО2+2h3→ (HNO)2+ 2h3О.

Затем под действием фермента гипонитритредуктазы присоединяются еще два атома водорода и образуется гидроксиламин:

(HNO)2+ 2h3→ 2Nh3OH.

Последующее восстановление гидроксиламина при участии фермента гидроксиламинредуктазы приводит к образованию аммиака:

Nh3OH +h3 →Nh4+h3O.

Ферменты, под влиянием которых нитраты восстанавливаются до аммиака, представляют собой металлофлавопротеиды. Для фермента, участвующего в восстановлении нитратов до нитритов, необходим молибден; для превращения нитрита в гипонитрит и гипонитрита в гидроксиламин – медь, железо и магний, а для перехода последнего в аммиак – марганец и магний. Из всех названных элементов особую роль в усилении процессов восстановления нитратов играет молибден.

Нитраты в растениях восстанавливаются по мере использования аммиака на синтез органических азотистых соединений. Нитратный азот способен накапливаться в растениях, не причиняя им вреда, в значительных количествах. Однако содержание нитратов в кормах, овощах и других продуктах растительного происхождения выше определенного уровня вредно для животных и человека.

В свободном виде аммиак содержится в высших растениях в незначительных количествах, чрезмерное его накопление, особенно при дефиците углеводов, ведет к отравлению растений.

Если же углеводов достаточно, аммиачный азот, поступивший в растения из почвы или образовавшийся при восстановлении нитратов, присоединяется к органическим кетокислотам – продуктам неполного окисления углеводов (щавелевоуксусной и кетоглутаровой или фумаровой), образуя первичные аминокислоты – аспарагиновую и глутаминовую:

+Nh4

СООН ∙ СО ∙ СН2∙ СООН → СООН ∙Ch3∙CHNh3∙ СООН

щавелевоуксусная кислота-Н2Оacпapaгиновая кислота

+Nh4

СООН ∙ СО ∙ СН2∙ СН2∙ СООН → СООН ∙ СН2∙Ch3∙CHNh3∙ СООН

кетоглутаровая кислота-Н2Оглутаминовая кислота

Этот процесс называется прямым аминированием и является основным способом образования аминокислот. Он указывает на тесную связь углеводного и белкового обменов. Все другие аминокислоты, входящие в состав белка (более 20), синтезируются переаминированием аспарагиновой и глутаминовой кислот и их амидов – аспарагина и глутамина, а также в результате других специфических реакций. В процессе переаминирования под воздействием соответствующих ферментов происходит перенос аминогрупп указанных и других аминокислот на другие кетокислоты.

Например, пировиноградная кислота, присоединяя аминную группу от аспарагиновой или глутаминовой кислоты, дает аланин. Глутаминовая и щавелевоуксусная кислоты в реакции переаминирования образуют аспарагиновую и α-кетоглутаровую кислоты.

1. СООН ∙ СН2 ∙ CHNh3 ∙ СООН + СН3 ∙ СО ∙ СООН

аспарагиновая кислота пировиноградная кислота

→ СН3 ∙ CHNh3 ∙ СООН + СООН ∙ СН2 ∙ СО ∙ СООН

аланин щавелевоуксусная кислота

аминотрансфераза

2. СООН ∙ СН2 ∙ СН2 ∙ CHNh3 ∙ СООН+ СООН ∙ СН2 ∙ СО2 ∙ СООН

глутаминовая кислота щавелевоуксусная кислота

СООН ∙ СО ∙ СН2 ∙ СН2 ∙ СООН + СООН ∙ СН2 ∙CHNh3 ∙ СООН

α-кетоглутаровая кислота аспарагиновая кислота

Переаминирование имеет большое значение для синтеза белков, а также для дезаминирования аминокислот. Дезаминирование – отщепление аминогруппы от аминокислоты, в результате чего образуется аммиак и кетокис-лота. Последняя перерабатывается растением в углеводы, жиры и другие вещества, а аммиак вновь используется для синтеза аминокислот.

Большое значение в азотном обмене принадлежит амидам – аспарагину и глутамину, которые образуются присоединением к аспарагиновой и глутаминовой кислотам еще по одной молекуле аммиака:

СООН ∙ СН2∙CHNh3∙ СООН +NН3=

аспарагиновая кислота

= CОNh3∙ СН2 ∙CHNh3∙ СООН + Н2О

амид аспарагиновой кислоты (аспарагин)

Как показали исследования Д. Н. Прянишникова, благодаря образованию амидов обеззараживается аммиак, накопившийся в растениях при обильном аммиачном питании и недостатке в растениях углеводов. При недостатке углеводов и, следовательно, органических кислот (особенно при прорастании семян, имеющих малый запас углеводов, например сахарной свеклы) аммиачный азот не успевает использоваться на синтез аминокислот и накапливается в тканях, вызывая их «аммиачное отравление». Растения, репродуктивные органы которых содержат большое количество углеводов (например, картофель), быстро усваивают аммиачный азот и хорошо отзываются на внесение аммиачных удобрений.

Синтез белков, состоящих из аминокислот, соединенных между собой пептидными связями, происходит с участием нуклеиновых кислот, являющихся матрицей, на которой фиксируются и соединяются аминокислоты в определенной последовательности с образованием разнообразных белковых молекул. Одновременно с синтезом в растениях происходит распад белков на аминокислоты (отщепление аммиака под действием протеолитических ферментов). В молодых растущих органах и растениях белков синтезируется больше, чем распадается; по мере старения, наоборот, расщепление идет быстрее, чем синтез. Таким образом, синтез органических веществ начинается с аммиака, а распад завершается его образованием. Как сказал Д. Н. Прянишников, «аммиак есть альфа и омега в обмене азотистых веществ в растениях».

Растения поглощают азот и синтезируют белки и другие органические азотистые вещества в течение всей вегетации, но интенсивность этих процессов в разные фазы роста и развития неодинакова.

При прорастании семян расщепляются запасные белки эндосперма или семядолей и продукты гидролиза используются для построения белков других органов растения. По мере формирования фотосинтезирующего листового аппарата и корневой системы питание растений и синтез белка происходят за счет минерального азота, поглощаемого из почвы. Наиболее интенсивно азот поглощается растениями при максимальном росте вегетативных органов – стеблей и листьев. Из стареющих частей растений, где преобладает распад белка, продукты гидролиза передвигаются в молодые растущие органы. При образовании репродуктивных органов белковые вещества вегетативных частей растения распадаются и продукты распада поступают в репродуктивные органы, где из них вновь синтезируются белки. Постепенно поглощение азота из почвы уменьшается, пока не прекращается вовсе.

Содержание азота сильно варьирует в разных растениях и органах одного и того же растения. Семена содержат больше азота, чем листья и стебли в конце вегетации. До 90 % азота входит в состав белков. Бобовые растения во всех органах содержат больше азота, чем злаковые.

При недостатке азота рост и развитие растений резко ухудшаются. Прежде и сильнее других органов страдают листья: они растут мелкие, светло-зеленого цвета, преждевременно желтеют, стебли становятся тонкими и слабо ветвятся. Ухудшается формирование репродуктивных органов и налив зерна. При нормальном азотном питании растения образуют мощные листья и стебли с интенсивной зеленой окраской, хорошо растут и кустятся, нормально формируют репродуктивные органы. В условиях избыточного азотного питания, особенно во второй половине вегетации, задерживается созревание растений, они формируют большую вегетативную массу, но мало зерна, клубней и корнеплодов. Увеличение содержания в них азотистых веществ отрицательно сказывается на хозяйственной ценности урожая. Например, при избыточном азотном питании в конце вегетации в корнях сахарной свеклы накапливается много небелковых азотных соединений, из-за чего снижается содержание сахара. Как отмечалось, при избыточном азотном питании в растениях накапливаются опасные для людей и животных количества нитратов.

Качество растениеводческой продукции зависит и от вида азотных соединений, усваиваемых растениями. При аммиачном (Nh5+) питании повышается восстановительная способность растительной клетки, больше образуется восстановленных органических соединений, при нитратном (NO3-) питании, наоборот, преобладает окислительная способность клеточного сока, больше образуется органических кислот. Д. Н. Прянишников и его ученики доказали, что аммиачный и нитратный азот при определенном сочетании внешних и внутренних условий могут быть равноценными источниками питания растений.

Усвоение растениями аммиачного и нитратного азота зависит от реакции среды, концентрации в почве сопутствующих катионов, анионов и зольных элементов (фосфора, серы, калия, микроэлементов), концентрации в почвенном растворе кальция, магния, аммонийных и нитратных солей, обеспеченности растений углеводами и биологических особенностей культуры. При нейтральной реакции аммиачные соли усваиваются растениями лучше, а при кислой – хуже, чем нитратные. При аммиачном питании положительно влияет на урожай повышенная концентрация в питательном субстрате кальция, магния и калия, а при нитратном питании важное значение имеет достаточное обеспечение растений фосфором и молибденом.

Отрицательное влияние избыточной концентрации аммиачного азота в растворе наиболее вероятно при внесении азотных удобрений в рядки при посеве. Поэтому для внесения одновременно с севом лучше использовать нитратные, а не аммиачные формы удобрений и вносить их небольшими дозами.

studfiles.net

Поступление и превращение азота в растениях

Два миллиарда бактерий в 1 г почвы составляют около 3% сухой массы почвы. Такое большое число бактерий позволяет считать, что большинство процессов, происходящих в почве, носит биологический характер, т.е. связано с жизнедеятельностью бактерий.

Если бы процесс накопления азота, так же как и углерода, шел только в одну сторону, то жизнь стала бы скоро на Земле невозможной из-за обилия неразложившихся органических остатков. Мы уже знаем, что жизнедеятельность бактерий является причиной разложения белковых веществ.

Разложение белков бактериями. Бактерии, разлагающие белковые вещества на более простые составные части, называются гнилостными бактериями или аммонификаторами, так как в результате разложения белков в среде накапливается аммиак. Разлагая сложные белковые вещества на простые минеральные соединения, бактерии сами питаются продуктами разложения и размножаются. Однако образуемая ими масса тел составляет лишь ничтожную долю от разложившегося вещества. В этой минерализующей деятельности и заключается та огромная полезная роль гнилостных бактерий, которую они играют в природе.

Процесс гниения протекает как в анаэробных, так и в аэробных условиях. Особенно быстро он проходит в аэробных условиях.

В факультативно-анаэробных условиях гниение белков осуществляется целым рядом бактерий. Из них можно отметить кишечную палочку и протея.

В аэробных условиях разложение белков производит сенная палочка и другие спорообразующие формы. Из неспоро-образующих форм можно упомянуть небольшую палочку (1-2 мкм) - псевдомонас.

При гниении образуются вода, углекислый газ, аммиак, сероводород, метилмеркаптан (Ch4 SH). Очень характерными продуктами анаэробного расщепления белков являются дурно пахнущие продукты индол и скатол, возникающие в результате частичного разрушения аминокислоты триптофана в анаэробных условиях.

Высушенное белковое вещество не разлагается бактериями и может сохраняться очень долго. Сушеное или прокопченное мясо, сухой яичный порошок не портятся, если их хранить всухом месте.

Разложение мочевины. Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина - главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ.

Процесс нитрификации. Образовавшийся в результате аммонификации аммиак или используется высшими растениями, или нитрифицируется. Процесс нитрификации заключается в окислении аммиака до азотной кислоты. Первая фаза нитрификации вызывается микробом, окисляющим аммиак до азотистой кислоты. Он получил название нитрозомонас. Вторая фаза вызывается бактерией нитробактер, окисляющей азотистую кислоту до азотной. В почве азотистая кислота не накапливается, так как обе эти бактерии встречаются всегда вместе, находясь в своеобразном симбиозе.

Нитрозомонас представляет собой снабженную жгутиком шарообразную бактерию, а нитробактер неподвижен и является маленькой палочкой. На первом этапе нитрификации выделяется больше энергии, чем на втором.

В первой фазе нитрификации выделяется 663,6 Дж (или 158 кал):

Во второй фазе нитрификации энергии освобождается значительно меньше:

Нитрификаторы синтезируют органическое вещество путем хемосинтеза за счет энергии окисления аммиака в азотистую кислоту, а азотистой кислоты в азотную. Нитрификаторы, так же как и зеленые растения, используют для питания углекислый газ.

С.Н. Виноградский обнаружил очень высокую чувствительность нитрификаторов к органическому веществу, которое действует на них как яд, причем нитрозомонас более чувствителен к органическому веществу, чем нитробактер. Малые концентрации органического вещества задерживают рост бактерий, а несколько большие окончательно его останавливают.

Нитрификация в почве. Нитрификация в почве идет несколько отлично от нитрификации в лабораторной обстановке. В первую очередь это касается влияния на этот процесс органического вещества. Если в лабораторной обстановке нитрификаторы проявляют очень высокую чувствительность к органическому веществу и в его присутствии не растут, то в природной обстановке наблюдается как раз обратная картина. Наличие органического вещества способствует процессу нитрификации, так как является источником образования аммиака.

Процесс денитрификации. С круговоротом азота в природе связан также и процесс денитрификации, обратный по своей сути процессу азотфиксации. Денитрификацией называется процесс восстановления нитратов до свободного азота.

Процесс денитрификации, в отличие от нитрификации и азотфиксации, вызывается целым рядом малоспецифических микроорганизмов, относящихся к неспороносным палочкам. Денитрифицирующие бактерии являются факультативными анаэробами. В условиях широкого доступа кислорода они денитрификации не производят. Стоит им, однако, попасть в анаэробные условия, как при наличии нитратов и доступного им органического вещества начинается процесс денитрификации. При нехватке кислорода микроорганизмы начинают отнимать его от нитратов, восстанавливая их. Одновременно при этом окисляется усвояемое ими органическое вещество - сахара или соли органических кислот. Наилучшими условиями для протекания процесса денитрификации являются анаэробные условия, наличие нитратов и подходящего для микроорганизмов органического вещества.

Круговорот азота в природе. Подведем итоги по круговороту азота в природе. Высшее растение синтезирует белок в своем теле из связанного минерального азота и углеводов. Растения поедаются животными, которые сами не в состоянии синтезировать белки из углеводов и минерального азота. Отмирая, животные и растения становятся пищей гнилостных бактерий, разлагающих белки до аммиака, эти же бактерии разлагают и белки, находящиеся в навозе. Аммиак усваивается растением или нитрифицируется. Азотфиксаторы связывают атмосферный азот и переводят опять в белковый, который в дальнейшем может разлагаться гнилостными бактериями. Здесь следует еще упомянуть о связывании азота электрическими разрядами в атмосфере, который в виде азотной кислоты с дождем попадает в почву. Так происходит круговорот азота в природе; он переходит из одной формы в другую, подтверждая великий закон природы - закон сохранения вещества, открытый М.В. Ломоносовым.

mirznanii.com

Шпаргалка - Поступление и превращение азота в растениях

Поступление и превращение азота в растениях

Поглощение азота растением

Формы азота, используемые растением. Азот входит в состав важнейшей части живого организма, а именно в состав запасных белков и белков цитоплазмы. В составе золы азота нет, так как при сжигании растений он образует газообразные окислы. В сухом веществе растения содержится в среднем 1,5% азота. Добывание азота представляет для растениянаибольшие трудности, так как азот не входит в состав минералов и его накопление и превращение в почве полностью связано с жизнедеятельностью организмов.

В почве доступный для растения азот находится в основном в форме нитратов аммонийных солей.

Восстановление нитратов растениями. Нитраты представляют собой окисленную форму азота и должны быть восстановлены растением до Nh3, после чего они могут войти в состав аминокислот, а затем белка. Можно считать, что восстановление нитратов идет двумя путями:

1)восстановление за счет химической энергии дыхания и 2) фотохимическое восстановление в хлоропластах.

Восстановление нитратов идет этапами: сначала до азотистой кислоты HNO2, затем до гидрокисламина Nh3OH и, наконец, до аммиака Nh4. Восстановление нитратов до Nh4-и Nh3-гpyпп осуществляется с помощью фермента нитратредуктазы, в состав кофермента которой входит молибден.

Восстановленный азот нитратов или непосредственно поглощенный ион аммония, соединяясь с продуктами превращения углеводов, образует аминокислоты, а затем белки. Аммиак, реагируя с некоторыми органическими кислотами, может образовать аминокислоты. Так, например, аммиак, реагируя с пировиноградной кислотой, образует аминокислоту аланин:

Образовавшиеся белковые вещества подвергаются превращениям в теле растения. Животный организм все время выводит азот из своего тела в виде мочевины и отчасти мочевой кислоты. В отличие от животных растение очень бережно относится к азоту, не теряя его.

При прорастании семян расщепляются запасные белки, а количество конституционных белков не только не уменьшается, а все время увеличивается. Затем происходит накопление белков в связи с переходом растения к автотрофному питанию.

Роль амида, аспарагина, глютамина и мочевины в растении. При восстановлении нитратов, а также при дезаминировании аминокислот (т.е. отщеплении от них аммиака) в растениях может накопляться аммиак, который ядовит для большинства из них. В растении аммиак обезвреживается, так как он связывается аспарагиновой или глутаминовой кислотой, образуя соответственные амиды (аспарагин, глутамин). У многих низших растений образуется мочения:

Доказан и прямой синтез мочевины из углеводов и аммиака у многих грибов (дождевики, шампиньоны). Содержание мочевины у дождевиков доходит до 10,7% от сухого вещества. Таким образом, аспарагин, глутамин и мочевина играют большую физиологическую роль, так как являются соединениями, обезвреживающими ядовитое действие аммиака, а также представляют собой резерв аминогрупп Nh3 в растении для синтеза аминокислот.

Подводя итоги, можно отметить два типа синтеза белков: первичный и вторичный. В обоих этих синтезах аммиак играет большую роль, что и дало возможность Д.Н. Прянишникову сказать, что аммиак есть альфа и омега (первая и последняя буквы греческого алфавита), т.е. начало и конец, превращения белков в растениях. При первичном синтезе из аммиака и углеводов строится белок (левая часть схемы). При распаде белка образуются аминокислоты, от которых при дезаминировании отщепляется аммиак, связывающийся в аспарагин или глютамин. При вторичном синтезе белков (правая и нижняя части схемы) происходит отщепление аммиака от аспарагина и образование аминокислот из углеводов (вернее, из продуктов их превращения) и аммиака. Все эти представления можно объединить в следующую схему Прянишникова:

Усвоение органических форм азота

Стерильные культуры покрытосеменных растений

Долгое время оставался нерешенным вопрос о возможности усвоения корневой системой растений органических форм азота. Вопрос этот можно было решить только в стерильных культурах, так как в нестерильных условиях развились бы бактерии, которые своими ферментами разложили бы органический азот и превратили бы его в минеральные формы. Корневая система высших растений находилась в простерилизованном питательном растворе, содержащем органический азот. Семена растений стерилизовались бромной водой или раствором сулемы.

Опыты показали, что хотя аминокислоты и могут быть усвоены зеленым растением, но это усвоение идет крайне медленно, и растения, выращенные на этих соединениях, всегда отстают в росте от растений, получивших минеральные формы азота.

Насекомоядные растения. Большой интерес представляют высшие растения со своеобразным типом азотистого питания. Сюда относятся некоторые сапрофиты, паразиты, полупаразиты и, наконец, насекомоядные растения. Своеобразие азотистого, а у некоторых форм и углеродного питания возникло в процессе эволюции под влиянием условий существования и естественного отбора. Таким образом, в отличие от грибов и бактерий, где гетеротрофное питание азотом имеет первичный характер, у этих растений оно возникло вторично. Наиболее интересную группу растений, питающихся органическим азотом, составляют насекомоядные растения.

К насекомоядным растениям принадлежит примерно 500 видов растений. Все они обитатели болот. Несмотря на богатство болотных почв органическим веществом, находящийся в этих почвах органический азот недоступен для растений. Болотные почвы также очень бедны и минеральными солями (фосфор, калий и др.). Все насекомоядные растения имеют хлорофилл, т.е.

Ознакомимся с некоторыми представителями насекомоядных растений.

Росянка — многолетнее растение, растет на сфагновых болотах. Каждый год на поверхности мха образуется новая розетка листьев росянки. Листья снабжены многочисленными железистыми волосками (их часто называют щупальцами), выделяющими липкую жидкость, к которой и прилипают мелкие насекомые — комары и мелкие мухи. При прилипании насекомого пластинка листа свертывается. Особенно хорошо это свертывание пластинки видно у вида росянки длиннолистной. После того как насекомое прилипнет к листу, в растении начинается выделение гидролитических ферментов — протеаз, разлагающих белки, и муравьиной кислоты. Кислота способствует работе фермента протеазы, и, кроме того, она действует как яд на бактериальную флору. Последнее очень важно, так как пышное развитие флоры гнилостных бактерий могло бы сказаться отрицательно на самом растении.

Ботаник Фрэнсис Дарвин, сын Чарльза Дарвина, выяснил благоприятное влияние питания росянки насекомыми. Он взял шесть сосудов с растениями росянки и разделил каждый из них перегородкой. По одну сторону перегородки росянки получали мясо, а по другую сторону им его не давали.

В конце опыта выяснилось, что на 100 цветков у контрольной группы, которые не получали мяса, приходится 165 цветков у получавших мясо. Иными словами, репродуктивная способность растений росянки, питавшихся мясом, сильно возрастала.

Большой интерес представляет обитающая в болотистых водоемах пузырчатка. Помимо рассеченных листьев, она несет еще характерные пузыревидно измененные листья. В такой пузырек проникают мелкие рачки и уже не могут выбраться наружу, так как створка, сквозь которую проник рачок, открывается в одну сторону.

Из других насекомоядных растений можно отметить кувшиноносы ( непентес) из тропиков Мадагаскара и Явы: австралийский цефалотус и американскую сарацению, листья которых имеют вид кувшинов, куда и попадают насекомые. Эти растения также выделяют гидролизирующие белки-ферменты и переваривают насекомых. У цефалотуса выделения ферментов не происходит.

Многие насекомоядные растения привлекают к себе насекомых яркой окраской листьев, а некоторые выделяют сладкий сок. Так, например, у кувшиноноса в верхней части кувшинчиков имеются железки, выделяющие сладкий сок.

Особенно интересна венерина мухоловка, растущая на болотах штата Каролина в Северной Америке. Это небольшое растение активно захлопывает створки листьев, когда насекомое заденет чувствительный волосок его листа.

Симбиоз и паразитизм. Особую группу покрытосеменных растений составляют сапрофиты. Встречаются они на богатой органическими веществами почве, в лесах, среди разлагающейся лесной подстилки. К ним относятся такие растения, как подъельник и орхидея гнездовка. Оба эти растения бесцветны. Правда, в листьях гнездовки содержится небольшое количество хлорофилла а, хлорофилла б у нее совсем не найдено.

Подъельник — растение-сапрофит, лишенное хлорофилла. По-видимому, гриб снабжает подъельник углеводами и азотистыми веществами из малодоступного для растения перегноя, очевидно, получая от растения физиологически активные вещества (витамины), а также, возможно, и аминокислоты. Выращивая сосну в стерильных условиях и затем заражая ее определенным видом гриба (эктотрофная микориза), удалось экспериментально доказать наличие связи между высшим растением и грибом. При наблюдениях за растениями и грибами в природной обстановке выявилась тесная связь между определенными грибами и высшими растениями. По меткому выражению одного ученого, гриб кортинариус следует за березой, как «дельфин за кораблем». Большинство наших съедобных грибов образуют эктотрофную микоризу и тесно связано с определенными деревьями. Это давно отмечено в названиях грибов.

В настоящее время показано, что семена орхидеи содержат очень незначительные количества витамина РР (никотиновой кислоты). Грибок снабжает семена орхидеи никотиновой кислотой, после чего они и начинают прорастать. Кроме того, синтез витамина Biтакже несколько затруднен у орхидей, и снабжение семян этими веществами способствует их прорастанию и росту корней и надземной массы.

Большинство травянистых дикорастущих и культурных растений также содержат эндотрофную микоризу, вызываемую низшими грибами, имеющими неразделенный перегородками мицелий. Отмечено, что при неблагоприятных условиях, например при сильном увлажнении, гриб часто становится паразитом растения. По-видимому, и в случае эндотрофной микоризы гриб снабжает растение азотом, добывая его из перегноя, а от растения получает углеводы, а также физиологически активные вещества.

К последней группе растений, отклоняющихся в своем азотистом питании, относятся полупаразиты и паразиты. По-видимому, путь к паразитизму у высших растений лежал и лежит через полупаразитизм.

Много полупаразитов встречается в семействе норичниковых. Среди полупаразитов из норичниковых можно отметить характерные растения лугов: погремок, очанку и др. Растения эти присасываются своими корнями к корням других растений. Одни из них сохраняют более или менее нормальную зеленую окраску, а другие уже значительно меньше содержат хлорофилла (как, например, погремок). Основной причиной перехода этих растений к паразитическому образу жизни является слабое развитие корневой системы, вследствие чего они не могут свести своего водного баланса.

Из полных паразитов можно упомянуть о видах заразихи, поражающей подсолнечник, тыквенные и ряд дикорастущих растений. Мелкие семена заразихи прорастают, стимулируемые подкислением субстрата корневыми выделениями. Основным мероприятием по борьбе с заразихой является создание невосприимчивых (иммунных) сортов.

Паразит повилика в отличие от заразихи, которая поражает корни, обвивает растение и присасывается к его стеблю. У повилики имеется очень незначительное количество хлорофилла. Проросток повилики совершает круговое движение, свойственное всем растениям, но у повилики оно проявляется особенно резко. Если при этом повилика не встретит растения, вокруг которого она может обвиться, то она погибает.

Усвоение молекулярного азота микроорганизмами

Клубеньковые бактерии. Способность бобовых растений использовать атмосферный азот была доказана опытами немецких ученых Г. Гельригеля и Г. Вильфарта в 1886 г. Им удалось показать, что, посеянные в прогретый песок, в котором убиты все бактерии, бобовые растения, не образующие в этом случае клубеньков, не усваивают (не фиксируют) атмосферный азот, а растут лишь при наличии его в виде сортветственных солей в песке. Впоследствии бактерии были выделены в чистую культуру и названы клубеньковыми бактериями. Оказалось, что, прекрасно развиваясь на питательных средах, клубеньковые бактерии обычно не фиксируют при этом атмосферного азота. Усвоение азота воздуха идет у них беспрепятственно только в симбиозе (сожительстве) с бобовыми растениями.

Характер симбиоза. Находящиеся в почве клубеньковые бактерии проникают в корень бобового растения и здесь начинают размножаться, образуя сплошной тяж бактерий, идущий через ряд клеток. Бактерии интенсивно делятся и заполняют клетки корня. Бобовое растение не остается инертным по отношению к проникшей бактерии, а реагирует усиленным делением клеток, разрастающихся в виде клубеньков или желваков. Клубеньковые бактерии приносят растению пользу, снабжая его азотом.

Специфичность клубеньковых бактерий. Клубеньковые бактерии, поселяющиеся на корнях клевера, не заражают никакой другой бобовой культуры. Клубеньковые бактерии, развивающиеся на горохе, могут, кроме гороха, заражать вику, чечевицу, чину и конские бобы. Иными словами, клубеньковые бактерии образуют специфические расы, заражающие только определенные виды бобовых растений.

Вирулентность клубеньковых бактерий. Вирулентностью бактерий называется их способность заражать данное растение. Очень часто клубеньковые бактерии оказываются маловирулентными, т.е. не заражают или плохо заражают бобовые растения.

Активность клубеньковых бактерий. Помимо вирулентности, важное значение имеет и активность данной расы бактерий. Раса клубеньковой бактерии может быть очень вирулентной, но в то же время неактивной, т.е. она может давать много клубеньков, но не усваивать атмосферного азота.

Бактериальное удобрение нитрагин. Фактически очень часто даже на землях, где десятилетиями культивировались мотыльковые растения, на корнях образуется очень небольшое число клубеньков или даже их совсем не образуется. Для того чтобы обеспечить наличие активных клубеньков, мотыльковые растения перед посевом можно заразить бактериальным препаратом, состоящим обычно из нескольких рас клубеньковых бактерий. Такой бактериальный препарат получил название нитрагин.

Другие азотфиксирующие симбиотические организмы. Помимо клубеньковых бактерий, в природе встречаются и другие аналогичные симбиозы. На корнях ольхи образуются большие деревянистые вздутия (клубеньки), в которых находятся актиномицеты, фиксирующие атмосферный азот.

Свободноживущие азотфиксаторы. Помимо клубеньковых бактерий, в почве встречаются еще и другие виды, способные усваивать атмосферный азот. Выделить подобную бактерию удалось С.Н. Виноградскому в 1893 г. на специальной среде для азотфиксирующих бактерий. Для этой цели он взял среду, содержащую глюкозу и некоторые соли, но абсолютно не содержащую связанного азота ни в органической, ни в минеральной форме. Таким образом, в этой среде могли развиваться только те бактерии, которые усваивают азот из воздуха. Кроме того, опыт был поставлен в анаэробных условиях, т.е. без доступа кислорода. В этих условиях удалось выделить бактерию, вызывающую масляно-кислое брожение, хорошо фиксирующую атмосферный азот, — клостридиум пастерианум.

Свое видовое название бактерия получила в честь Пастера, а родовое — от латинского слова «клострум» — веретено. Клостридиум является сравнительно крупной палочкой, в 3 — 4 мкм длины, дающей споры. Во время спорообразования клетка клостридиума вздувается в виде веретена. Клостридиум имеет жгутики, расположенные по всейповерхности тела, и может сравнительно быстро перемещаться. В лабораторных условиях клостридиум фиксирует атмосферный азот, хотя и в небольших, но заметных количествах от 1 до 5 мг азота на 1 г использованного сахара. Клостридиум — очень широко распространенная бактерия, встречающаяся в самых разнообразных почвах — кислых, нейтральных и щелочных.

Азотобактер. Другой азотфиксирующей бактерией является азотобактер, открытый в 1901 г. Азотобактер в отличие от клостридиума — форма аэробная, развивающаяся при широком доступе кислорода. Азотобактер имеет характерную форму удлиненного кокка, делящегося не путем появления поперечной перегородки, а перетяжкой (Рис.60). Клетки азотобактера довольно крупные. Размер их колеблется от 1 до 10 мкм. Клетки окружает слизистая капсула. Форма азотобактера не остается без изменения. В молодом возрасте он имеет форму очень толстой палочки, затем эллиптическую, а часто и совсем округлую форму. Фиксация азота азотобактером более интенсивна, чем у клостридиума, а именно от 2 до 12 и даже до 20 мг азота на 1 г сахара. Азотобактер очень чувствителен к реакции среды. Оптимум для его развития будет при рН = 7,0 или 7,2, максимум — при рН = 9,0. В почвах, имеющих рН ниже 5,6, он обычно не встречается.

Механизм фиксации азота не может считаться до сего времени полностью выясненным. Наиболее вероятное предположение заключается в том, что водород при брожении у клостридиума и при дыхании у азотобактера выделяется не в молекулярном (Нг) виде, а в форме атомного водорода (2Н). Вот этот-то активный атомный водород и способен связывать молекулярный азот атмосферы в виде аммиака. В последнее время, применяя тяжелый азот (l5 N2), удалось показать значительную достоверность этой точки зрения.

Установлено, что многие сине-зеленые водоросли также фиксируют атмосферный азот.

Азотобактерин. Существует препарат азотобактера для заражения семян, названный азотобактерином. Азотобактерин готовится на аграрной среде в бутылках. Для заражения порции семян на 1 га требуется этого препарата всего 10 — 15 г. Многочисленные опыты дали очень неустойчивые результаты при применении азотобактерина. Лучше всего на азотобактерин реагируют некоторые овощные культуры.

Величины фиксации азота бактериями. Фиксация азота азотфиксирующими бактериями достигает значительных величин. Клевер за счет бактерий накапливает ежегодно в среднем 150-160 кг азота на 1 га, люцерна — около 300 кг, люпин — до 160 кг. Однолетние бобовые фиксируют значительно меньшие количества азота. Так, например, соя фиксирует из воздуха в год около 100, вика — 80, горох — около 60, фасоль — около 70 кг.

Бактерии в почве и их роль в круговороте веществ в природе

Число бактерий в почве. В почве содержится огромное число бактерий. Раньше их число измерялось сотнями тысяч на один грамм почвы. С.Н. Виноградский (1924) разработал метод непосредственного микроскопического подсчета бактерий в почве путем их окраски. После этого стало ясно, что число бактерий измеряется сотнями миллионов в 1 г. В бедных тундровых или песчаных почвах пустыни их насчитывается до J500 миллионов, в слабоподзолистых почвах — до одного миллиарда, а в богатых органическим веществом (чернозем) — до двух миллиардов и выше.

Два миллиарда бактерий в 1 г почвы составляют около 3% сухой массы почвы. Такое большое число бактерий позволяет считать, что большинство процессов, происходящих в почве, носит биологический характер, т.е. связано с жизнедеятельностью бактерий.

Если бы процесс накопления азота, так же как и углерода, шел только в одну сторону, то жизнь стала бы скоро на Земле невозможной из-за обилия неразложившихся органических остатков. Мы уже знаем, что жизнедеятельность бактерий является причиной разложения белковых веществ.

Разложение белков бактериями. Бактерии, разлагающие белковые вещества на более простые составные части, называются гнилостными бактериями или аммонификаторами, так как в результате разложения белков в среде накапливается аммиак. Разлагая сложные белковые вещества на простые минеральные соединения, бактерии сами питаются продуктами разложения и размножаются. Однако образуемая ими масса тел составляет лишь ничтожную долю от разложившегося вещества. В этой минерализующей деятельности и заключается та огромная полезная роль гнилостных бактерий, которую они играют в природе.

Процесс гниения протекает как в анаэробных, так и в аэробных условиях. Особенно быстро он проходит в аэробных условиях.

В факультативно-анаэробных условиях гниение белков осуществляется целым рядом бактерий. Из них можно отметить кишечную палочку и протея.

В аэробных условиях разложение белков производит сенная палочка и другие спорообразующие формы. Из неспоро-образующих форм можно упомянуть небольшую палочку (1-2 мкм) — псевдомонас.

При гниении образуются вода, углекислый газ, аммиак, сероводород, метилмеркаптан (Ch4 SH). Очень характерными продуктами анаэробного расщепления белков являются дурно пахнущие продукты индол и скатол, возникающие в результате частичного разрушения аминокислоты триптофана в анаэробных условиях.

Высушенное белковое вещество не разлагается бактериями и может сохраняться очень долго. Сушеное или прокопченное мясо, сухой яичный порошок не портятся, если их хранить всухом месте.

Разложение мочевины. Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина — главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ.

Процесс нитрификации. Образовавшийся в результате аммонификации аммиак или используется высшими растениями, или нитрифицируется. Процесс нитрификации заключается в окислении аммиака до азотной кислоты. Первая фаза нитрификации вызывается микробом, окисляющим аммиак до азотистой кислоты. Он получил название нитрозомонас. Вторая фаза вызывается бактерией нитробактер, окисляющей азотистую кислоту до азотной. В почве азотистая кислота не накапливается, так как обе эти бактерии встречаются всегда вместе, находясь в своеобразном симбиозе.

Нитрозомонас представляет собой снабженную жгутиком шарообразную бактерию, а нитробактер неподвижен и является маленькой палочкой. На первом этапе нитрификации выделяется больше энергии, чем на втором.

В первой фазе нитрификации выделяется 663,6 Дж (или 158 кал):

Во второй фазе нитрификации энергии освобождается значительно меньше:

Нитрификаторы синтезируют органическое вещество путем хемосинтеза за счет энергии окисления аммиака в азотистую кислоту, а азотистой кислоты в азотную. Нитрификаторы, так же как и зеленые растения, используют для питания углекислый газ.

С.Н. Виноградский обнаружил очень высокую чувствительность нитрификаторов к органическому веществу, которое действует на них как яд, причем нитрозомонас более чувствителен к органическому веществу, чем нитробактер. Малые концентрации органического вещества задерживают рост бактерий, а несколько большие окончательно его останавливают.

Нитрификация в почве. Нитрификация в почве идет несколько отлично от нитрификации в лабораторной обстановке. В первую очередь это касается влияния на этот процесс органического вещества. Если в лабораторной обстановке нитрификаторы проявляют очень высокую чувствительность к органическому веществу и в его присутствии не растут, то в природной обстановке наблюдается как раз обратная картина. Наличие органического вещества способствует процессу нитрификации, так как является источником образования аммиака.

Процесс денитрификации. С круговоротом азота в природе связан также и процесс денитрификации, обратный по своей сути процессу азотфиксации. Денитрификацией называется процесс восстановления нитратов до свободного азота.

Процесс денитрификации, в отличие от нитрификации и азотфиксации, вызывается целым рядом малоспецифических микроорганизмов, относящихся к неспороносным палочкам. Денитрифицирующие бактерии являются факультативными анаэробами. В условиях широкого доступа кислорода они денитрификации не производят. Стоит им, однако, попасть в анаэробные условия, как при наличии нитратов и доступного им органического вещества начинается процесс денитрификации. При нехватке кислорода микроорганизмы начинают отнимать его от нитратов, восстанавливая их. Одновременно при этом окисляется усвояемое ими органическое вещество — сахара или соли органических кислот. Наилучшими условиями для протекания процесса денитрификации являются анаэробные условия, наличие нитратов и подходящего для микроорганизмов органического вещества.

Круговорот азота в природе. Подведем итоги по круговороту азота в природе. Высшее растение синтезирует белок в своем теле из связанного минерального азота и углеводов. Растения поедаются животными, которые сами не в состоянии синтезировать белки из углеводов и минерального азота. Отмирая, животные и растения становятся пищей гнилостных бактерий, разлагающих белки до аммиака, эти же бактерии разлагают и белки, находящиеся в навозе. Аммиак усваивается растением или нитрифицируется. Азотфиксаторы связывают атмосферный азот и переводят опять в белковый, который в дальнейшем может разлагаться гнилостными бактериями. Здесь следует еще упомянуть о связывании азота электрическими разрядами в атмосфере, который в виде азотной кислоты с дождем попадает в почву. Так происходит круговорот азота в природе; он переходит из одной формы в другую, подтверждая великий закон природы — закон сохранения вещества, открытый М.В. Ломоносовым.

www.ronl.ru

Поступление и превращение азота в растениях

В настоящее время показано, что семена орхидеи содержат очень незначительные количества витамина РР (никотиновой кислоты). Грибок снабжает семена орхидеи никотиновой кислотой, после чего они и начинают прорастать. Кроме того, синтез витамина Biтакже несколько затруднен у орхидей, и снабжение семян этими веществами способствует их прорастанию и росту корней и надземной массы.

Большинство травянистых дикорастущих и культурных растений также содержат эндотрофную микоризу, вызываемую низшими грибами, имеющими неразделенный перегородками мицелий. Отмечено, что при неблагоприятных условиях, например при сильном увлажнении, гриб часто становится паразитом растения. По-видимому, и в случае эндотрофной микоризы гриб снабжает растение азотом, добывая его из перегноя, а от растения получает углеводы, а также физиологически активные вещества.

К последней группе растений, отклоняющихся в своем азотистом питании, относятся полупаразиты и паразиты. По-видимому, путь к паразитизму у высших растений лежал и лежит через полупаразитизм.

Много полупаразитов встречается в семействе норичниковых. Среди полупаразитов из норичниковых можно отметить характерные растения лугов: погремок, очанку и др. Растения эти присасываются своими корнями к корням других растений. Одни из них сохраняют более или менее нормальную зеленую окраску, а другие уже значительно меньше содержат хлорофилла (как, например, погремок). Основной причиной перехода этих растений к паразитическому образу жизни является слабое развитие корневой системы, вследствие чего они не могут свести своего водного баланса.

Из полных паразитов можно упомянуть о видах заразихи, поражающей подсолнечник, тыквенные и ряд дикорастущих растений. Мелкие семена заразихи прорастают, стимулируемые подкислением субстрата корневыми выделениями. Основным мероприятием по борьбе с заразихой является создание невосприимчивых (иммунных) сортов.

Паразит повилика в отличие от заразихи, которая поражает корни, обвивает растение и присасывается к его стеблю. У повилики имеется очень незначительное количество хлорофилла. Проросток повилики совершает круговое движение, свойственное всем растениям, но у повилики оно проявляется особенно резко. Если при этом повилика не встретит растения, вокруг которого она может обвиться, то она погибает.

Усвоение молекулярного азота микроорганизмами

Клубеньковые бактерии. Способность бобовых растений использовать атмосферный азот была доказана опытами немецких ученых Г. Гельригеля и Г. Вильфарта в 1886 г. Им удалось показать, что, посеянные в прогретый песок, в котором убиты все бактерии, бобовые растения, не образующие в этом случае клубеньков, не усваивают (не фиксируют) атмосферный азот, а растут лишь при наличии его в виде сортветственных солей в песке. Впоследствии бактерии были выделены в чистую культуру и названы клубеньковыми бактериями. Оказалось, что, прекрасно развиваясь на питательных средах, клубеньковые бактерии обычно не фиксируют при этом атмосферного азота. Усвоение азота воздуха идет у них беспрепятственно только в симбиозе (сожительстве) с бобовыми растениями.

Характер симбиоза. Находящиеся в почве клубеньковые бактерии проникают в корень бобового растения и здесь начинают размножаться, образуя сплошной тяж бактерий, идущий через ряд клеток. Бактерии интенсивно делятся и заполняют клетки корня. Бобовое растение не остается инертным по отношению к проникшей бактерии, а реагирует усиленным делением клеток, разрастающихся в виде клубеньков или желваков. Клубеньковые бактерии приносят растению пользу, снабжая его азотом.

Специфичность клубеньковых бактерий. Клубеньковые бактерии, поселяющиеся на корнях клевера, не заражают никакой другой бобовой культуры. Клубеньковые бактерии, развивающиеся на горохе, могут, кроме гороха, заражать вику, чечевицу, чину и конские бобы. Иными словами, клубеньковые бактерии образуют специфические расы, заражающие только определенные виды бобовых растений.

Вирулентность клубеньковых бактерий. Вирулентностью бактерий называется их способность заражать данное растение. Очень часто клубеньковые бактерии оказываются маловирулентными, т.е. не заражают или плохо заражают бобовые растения.

Активность клубеньковых бактерий. Помимо вирулентности, важное значение имеет и активность данной расы бактерий. Раса клубеньковой бактерии может быть очень вирулентной, но в то же время неактивной, т.е. она может давать много клубеньков, но не усваивать атмосферного азота.

Бактериальное удобрение нитрагин. Фактически очень часто даже на землях, где десятилетиями культивировались мотыльковые растения, на корнях образуется очень небольшое число клубеньков или даже их совсем не образуется. Для того чтобы обеспечить наличие активных клубеньков, мотыльковые растения перед посевом можно заразить бактериальным препаратом, состоящим обычно из нескольких рас клубеньковых бактерий. Такой бактериальный препарат получил название нитрагин.

Другие азотфиксирующие симбиотические организмы. Помимо клубеньковых бактерий, в природе встречаются и другие аналогичные симбиозы. На корнях ольхи образуются большие деревянистые вздутия (клубеньки), в которых находятся актиномицеты, фиксирующие атмосферный азот.

Свободноживущие азотфиксаторы. Помимо клубеньковых бактерий, в почве встречаются еще и другие виды, способные усваивать атмосферный азот. Выделить подобную бактерию удалось С.Н. Виноградскому в 1893 г. на специальной среде для азотфиксирующих бактерий. Для этой цели он взял среду, содержащую глюкозу и некоторые соли, но абсолютно не содержащую связанного азота ни в органической, ни в минеральной форме. Таким образом, в этой среде могли развиваться только те бактерии, которые усваивают азот из воздуха. Кроме того, опыт был поставлен в анаэробных условиях, т.е. без доступа кислорода. В этих условиях удалось выделить бактерию, вызывающую масляно-кислое брожение, хорошо фиксирующую атмосферный азот, - клостридиум пастерианум.

Свое видовое название бактерия получила в честь Пастера, а родовое - от латинского слова "клострум" - веретено. Клостридиум является сравнительно крупной палочкой, в 3 - 4 мкм длины, дающей споры. Во время спорообразования клетка клостридиума вздувается в виде веретена. Клостридиум имеет жгутики, расположенные по всейповерхности тела, и может сравнительно быстро перемещаться. В лабораторных условиях клостридиум фиксирует атмосферный азот, хотя и в небольших, но заметных количествах от 1 до 5 мг азота на 1 г использованного сахара. Клостридиум - очень широко распространенная бактерия, встречающаяся в самых разнообразных почвах - кислых, нейтральных и щелочных.

Азотобактер. Другой азотфиксирующей бактерией является азотобактер, открытый в 1901 г. Азотобактер в отличие от клостридиума - форма аэробная, развивающаяся при широком доступе кислорода. Азотобактер имеет характерную форму удлиненного кокка, делящегося не путем появления поперечной перегородки, а перетяжкой (Рис.60). Клетки азотобактера довольно крупные. Размер их колеблется от 1 до 10 мкм. Клетки окружает слизистая капсула. Форма азотобактера не остается без изменения. В молодом возрасте он имеет форму очень толстой палочки, затем эллиптическую, а часто и совсем округлую форму. Фиксация азота азотобактером более интенсивна, чем у клостридиума, а именно от 2 до 12 и даже до 20 мг азота на 1 г сахара. Азотобактер очень чувствителен к реакции среды. Оптимум для его развития будет при рН = 7,0 или 7,2, максимум - при рН = 9,0. В почвах, имеющих рН ниже 5,6, он обычно не встречается.

Механизм фиксации азота не может считаться до сего времени полностью выясненным. Наиболее вероятное предположение заключается в том, что водород при брожении у клостридиума и при дыхании у азотобактера выделяется не в молекулярном (Нг) виде, а в форме атомного водорода (2Н). Вот этот-то активный атомный водород и способен связывать молекулярный азот атмосферы в виде аммиака. В последнее время, применяя тяжелый азот (l5 N2), удалось показать значительную достоверность этой точки зрения.

Установлено, что многие сине-зеленые водоросли также фиксируют атмосферный азот.

Азотобактерин. Существует препарат азотобактера для заражения семян, названный азотобактерином. Азотобактерин готовится на аграрной среде в бутылках. Для заражения порции семян на 1 га требуется этого препарата всего 10 - 15 г. Многочисленные опыты дали очень неустойчивые результаты при применении азотобактерина. Лучше всего на азотобактерин реагируют некоторые овощные культуры.

Величины фиксации азота бактериями. Фиксация азота азотфиксирующими бактериями достигает значительных величин. Клевер за счет бактерий накапливает ежегодно в среднем 150-160 кг азота на 1 га, люцерна - около 300 кг, люпин - до 160 кг. Однолетние бобовые фиксируют значительно меньшие количества азота. Так, например, соя фиксирует из воздуха в год около 100, вика - 80, горох - около 60, фасоль - около 70 кг.

Бактерии в почве и их роль в круговороте веществ в природе

Число бактерий в почве. В почве содержится огромное число бактерий. Раньше их число измерялось сотнями тысяч на один грамм почвы. С.Н. Виноградский (1924) разработал метод непосредственного микроскопического подсчета бактерий в почве путем их окраски. После этого стало ясно, что число бактерий измеряется сотнями миллионов в 1 г. В бедных тундровых или песчаных почвах пустыни их насчитывается до J500 миллионов, в слабоподзолистых почвах - до одного миллиарда, а в богатых органическим веществом (чернозем) - до двух миллиардов и выше.

mirznanii.com