Лекарственные растения и травы

Меню сайта

Искусственное освещение растений. Освещенность для растений


Искусственное освещение растений

Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.

Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Сергеевич Фаминцын[1].

Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание,рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.

Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.

Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.

В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР),индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) илиметаллогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.

Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.

Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.

Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.

В последнее время на рынке появились источники фитоактивного освещения на основе светодиодов. Широкое применение получают белые светодиоды. НАСА уже провело успешные эксперименты по выращиванию пищи в космосе с помощью светодиодных светильников[источник не указан 444 дня].

Используемые части светового спектра

Естественный свет имеет высокую цветовую температуру (примерно 5000 K). Видимый нами свет изменяется в течение дня в зависимости от погоды и высоты подъема солнца, поэтому процесс фотосинтеза может протекать в различных условиях освещенности. Расстояние до солнца не играет существенной роли в процессе сезонных изменений освещенности, поэтому не берется в расчет при планировании искусственного освещения для выращивания растений. Наклон земной оси изменяется в течение года при вращении Земли вокруг Солнца. Летом свет падает почти под прямым углом, а зимой под углом 23,44 градусов к плоскости экватора. Этот небольшой наклон земной оси изменяет эффективную толщину атмосферы, которую необходимо преодолеть лучу света, для того чтобы достичь одной и той же площадки на поверхности Земли. При этом свет испускаемый Солнцем не остается неизменным, изменяется и интенсивность (летом больше, зимой меньше) и спектральный состав света, который достигает нас. Индекс цветопередачи позволяет оценить близость цветового оттенка к естественному освещению.

Разные стадии развития растения требуют освещения лучами из разных частей спектра. На начальной вегетативной стадии должна преобладать синяя часть спектра, тогда как на поздней репродуктивной — красно-оранжевая.

Источники фитосвета

Цветовая температура различных источников света, используемых в растениеводстве

Применяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.

Металлогалогенные лампы (МГ)

Металлогалогенные лампы излучают в синем спектре и хорошо заменяют условия весеннего и летнего естественного освещения.

Лампы накаливания

Обычные лампы накаливания излучают в красно-желтой части спектра и имеют низкую цветовую температуру (примерно 2700 K). Лампы такого типа не используются в качестве фитоосвещения, а только для подсветки растений в интерьере. Некоторые лампы накаливания имеют маркировку «grow lights» и покрыты светофильтром синего цвета, который уменьшает количество испускаемого ими красного света. Лампы со светофильтром не имеют особых преимуществ, поскольку фильтр лишь задерживает часть излучения в красной области спектра. Такие фитолампы имеют короткий срок службы около 750 часов и крайне не эффективны в плане расходования электроэнергии.

Люминесцентные лампы

Люминесцентная фитолампа с полным спектром. Длина около 40 см

В настоящее время цветовая температура люминесцентных лампы может варьироваться в широких пределах: от 2700 K до 7800 K. стандартные люминесцентные лампы можно применять для выращивания овощей, трав или рассады. Стандартные лампы производят в два раза больше световой энергии на единицу электрической мощности, чем лампы накаливания и имеют ресурс непрерывной работы порядка 20000 часов. Иногда в качестве фитоламп используют менее эффективные, но дешевые люминесцентные лампы холодной цветовой температуры.

Высокоэффективные люминесцентные лампы производят вдвое больше световой энергии, чем стандартные лампы. Специальная форма светильника с очень тонким профилем особенно выгодна при использовании в боксах с ограниченной высотой. Высокоэффективные люминесцентные лампы выдают порядка 5000 Люкс на 54 Вт мощности и выпускаются с теплым цветовым оттенком (2700 K) и холодным (6500 K). Ресурс работы таких ламп составляет около 10000 часов.

Компактные люминесцентные лампы — это уменьшенные копии люминесцентных ламп, которые используют как при выращивании рассады дома так и в больших теплицах. Компактные люминесцентные лампы используются со специальными рефлекторами, которые направляют свет на растения, точно так же как и ГР-лампы. Выпускаются в вариантах: теплый/красный (2700 K), дневной свет (5000 K) и холодный/синий (6500 K) цветовых оттенках. Ресурс работы компактных люминесцентных фитоламп составляет около 10000 часов.

Натриевые лампы высокого давления (НЛВД)

Натриевые лампы высокого давления имеют жёлтое свечение (2200 K) с очень низким индексом цветопередачи 22. Как правило, такие лампы используются на поздних (или репродуктивных) стадиях роста. Если использовать фитолампы такого типа на ранних стадиях вегетативного роста, растения растут немного быстрее, чем обычно. Оборотной стороной этого процесса является слишком высокое и раскидистое растение с длинными междоузлиями. Натриевые лампы высокого давления ускоряют процесс образования цветков и плодов у растений. Растения используют красно-оранжевую часть спектра НЛВД-ламп в репродуктивных целях, что позволяет получать более высокие урожаи трав, овощей, фруктов или цветов. Иногда растения визуально, из-за особенностей цветового оттенка ламп, выглядят бледными и нездоровыми.

Натриевые лампы высокого давления имеют продолжительный срок службы и в шесть раз большую светоотдачу на 1 Вт электроэнергии чем стандартная лампа накаливания. Ввиду высокой эффективности натриевых ламп их используют в качестве дополнительной подсветки в теплицах, где необходимую им часть синего спектра растения получают из естественного освещения. Но в высоких широтах, где период недостатка солнечного света очень продолжительный, НЛВД-лампы должны сочетаться с другими источниками света для правильного роста. НЛВД-освещение может привлекать насекомых или других вредителей, что может представлять угрозу для растущих растений. Натриевые лампы высокого давления излучают много тепла, что может вызвать вытягивание стеблей, хотя при должном контроле температуры воздуха эта проблема не так актуальна.

Комбинация металлогалогенных ламп (МГ) и натриевых (НЛВД)

В комбинированной НЛВД/МГ лампе в одном рефлекторе сочетается металлогалогенная колба с натриевой колбой высокого давления, при этом может использоваться общий балласт или два индивидуальных балластных устройства. Комбинация синей металлогалогенной и красной натриевой лампы высокого давления, как утверждают производители, является идеальной по спектральному составу и крайне эффективной для растениеводства, хотя на самом деле представляет собой компромисс между двумя ситуациями. Лампы такого типа стоят дороже, а служат меньше. Из-за небольшого размера ламп охватываемая световым пятном площадь оказывается значительно меньше той, что получается при использовании стандартных ГР-ламп.

Переключаемые, конвертируемые, универсальные светильники

Переключаемые, конвертируемые, универсальные светильники — это светильники в которые можно установить металлогалогенную колбу или эквивалентную ей по мощности натриевую лампу высокого давления. Растениеводы используют такие светильники при выращивании рассады и в вегетативный период с установленной металлогалогенной лампой, а затем, в период созревания плодов, меняют её на натриевую лампу высокого давления. Для переключения светильника нужно заменить колбу и настроить соответствующий режим работы. Более распространены металлогалогенные конвертационные лампы для использования в НЛВД-светильниках.

Светодиоды

Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами[2].

Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки. Хотя более перспективными следует считать белые светодиоды, спектр которых близок к естественному солнечному.

Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм»[3].

Пурпурный оттенок светодиодного фитоосвещения

Также имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400-500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны около 660 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Стандартные красные светодиоды с длиной волны 630 нм неэффективны. Красные фитосветодиоды имеют багряное, бархатистое свечение. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.

Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.

Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.

Световая эффективность

В следующей таблице приведена световая эффективность различных источников света

Требования к свету у растений

У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.

Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света такой как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.

Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.

Освещённость, измеряемая в люксах, является важной характеристикой для выращивания растений внутри помещений. Освещённость характеризует количество света, падающего на поверхность. Один люкс равен одному люмену света, падающему на один квадратный метр площади (лм/м2). Для офисного помещения достаточно освещённости в 400[источник не указан 238 дней] лк.

Однако, освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м2, илифотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.

См. также

Ссылки

  1. ↑ Светокультура — статья из Большой советской энциклопедии.
  2. ↑ Гавриленко А. П. светодиодный свет для теплиц. ООО “ЭНОВА Лайт” (май 2016).
  3. ↑ Patent US6921182 – Efficient LED lamp for enhancing commercial and home plant growth – Google Patents. Google.com. Проверено 26 февраля 2013.
  4. ↑ Нормированный так, чтобы максимальное значение составляло 100 %.
  5. ↑ 1 кандела*4π стерадиан/40 Вт
  6. ↑ Waymouth, John F., “Optical light source device”, US patent # 5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
  7. ↑ Keefe, T.J. The Nature of Light (2007). Проверено 5 ноября 2007.Архивировано из первоисточника 1 июня 2012.
  8. ↑ How Much Light Per Watt?
  9. ↑ Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
  10. ↑ Osram halogen (нем.) (PDF). www.osram.de(недоступная ссылка — история). Проверено 28 января 2008. Архивировано из первоисточника 7 ноября 2007.
  11. ↑ Osram Miniwatt-Halogen. www.ts-audio.biz(недоступная ссылка —история). Проверено 28 января 2008. Архивировано из первоисточника 17 февраля 2012.
  12. ↑ Klipstein, Donald L. The Great Internet Light Bulb Book, Part I(1996). Проверено 16 апреля 2006. Архивировано из первоисточника 1 июня 2012.
  13. ↑ China energy saving lamp. Проверено 16 апреля 2006. Архивировано из первоисточника 17 февраля 2012.
  14. ↑ Перейти к:12 Federal Energy Management Program (December 2000). «How to buy an energy-efficient fluorescent tube lamp» (U.S. Department of Energy).
  15. ↑ Department of the Environment, Water, Heritage and the Arts, Australia. Energy Labelling—Lamps(недоступная ссылка —история). Проверено 14 августа 2008. Архивировано из первоисточника 24 января 2007.
  16. ↑ Перейти к:12 Technical Information on Lamps (pdf). Optical Building Blocks(недоступная ссылка — история). Проверено 14 октября 2007.Архивировано из первоисточника 27 октября 2007. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  17. ↑ OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
  18. ↑ Перейти к:12 LED or Neon? A scientific comparison.
  19. ↑ Why is lightning coloured? (gas excitations). Архивировано из первоисточника 17 февраля 2012.
  20. ↑ The Metal Halide Advantage. Venture Lighting (2007). Проверено 10 августа 2008. Архивировано из первоисточника 17 февраля 2012.

verticalsad.ru

Искусственное освещение растений — WiKi

Для выращивания растений при искусственном освещении используются, в основном, электрические источники света, разработанные специально для стимуляции роста растений за счет излучения волн электромагнитного спектра, благоприятных для фотосинтеза. Источники фитоактивного освещения используются при полном отсутствии естественного света или при его недостатке. Например, зимой, когда продолжительности светового дня недостаточно для роста растений, искусственное освещение позволяет увеличить продолжительность их светового облучения.

Впервые применил в 1868 году керосиновые лампы для выращивания растений русский ботаник Андрей Фаминцын[1].

Искусственный свет должен обеспечивать тот спектр электромагнитного излучения, который растения в природе получают от солнца, или хотя бы такой спектр, который удовлетворял бы потребности выращиваемых растений. Уличные условия имитируются не только путём подбора цветовой температуры света и его спектральных характеристик, но и с помощью изменения интенсивности свечения ламп. В зависимости от вида выращиваемого растения, его стадии развития (прорастание, рост, цветение или созревание плодов), а также текущего фотопериода требуется особый спектр, световая отдача и цветовая температура источника света.

Применение

Источники искусственного света применяются в садоводстве, при озеленении помещений, при выращивании посевного материала, в производстве пищи (включая гидропонику и выращивание водорослей). Несмотря на то, что большинство источников фитоактивного света разработаны для применения в промышленных масштабах, возможно их применение и в бытовых условиях.

Согласно закону обратных квадратов, интенсивность светового излучения падает обратно пропорционально квадрату расстояния до источника света. Если, например, расстояние до лампы увеличить в два раза, то интенсивность света, достигающего объект, уменьшится в четыре раза. Этот закон служит серьезным препятствием для садоводов, поэтому много усилий направлено на улучшение утилизации света. Фермеры используют всевозможные рефлекторы, позволяющие сконцентрировать свет на небольшой площади, стараются высаживать саженцы как можно ближе друг к другу, делают все для того, чтобы свет попадал как можно больше на растения, а не рассеивался в пространстве.

В качестве источников света можно использовать лампы накаливания, люминесцентные лампы (ЛЛ), газоразрядные лампы (ГР), индукционные лампы, а также светодиоды. В настоящее время профессионалами, в основном, используются газоразрядные и люминесцентные лампы. В помещениях теплиц обычно устанавливают натриевые лампы высокого давления (НЛВД) или металлогалогенные (МГ) лампы, последние, правда, все чаще стали заменять на люминесцентные в виду их большей эффективности и экономичности.

Металлогалогенные лампы иногда используют в первой (вегетативной) фазе роста растений, поскольку такие лампы излучают достаточное количество синего света, а синий свет способствует росту зелёной массы на первых стадиях развития растений; в то же время МГ-лампы имеют пик излучения в районе жёлтого цвета.

Натриевые лампы высокого давления используются во второй (репродуктивной) фазе роста, поскольку их излучение имеет красноватый оттенок. Красный спектр способствует цветению и образованию плодов. Если натриевые лампы использовать в стадии вегетативного роста, растения развиваются и растут быстрее, но при этом расстояния между междоузлиями у них больше и, в целом, растения оказываются выше.

Иногда в обоих периодах применяются МГ-лампы с добавлением красного спектра или НЛВД-лампы с добавлением синего спектра.

Используемые части светового спектра

Естественный свет имеет высокую цветовую температуру (примерно 5000 K). Видимый нами свет изменяется в течение дня в зависимости от погоды и высоты подъёма солнца, поэтому процесс фотосинтеза может протекать в различных условиях освещенности. Расстояние до солнца не играет существенной роли в процессе сезонных изменений освещенности, поэтому не берется в расчет при планировании искусственного освещения для выращивания растений. Наклон земной оси изменяется в течение года при вращении Земли вокруг Солнца. Летом свет падает почти под прямым углом, а зимой под углом 23,44 градусов к плоскости экватора. Этот небольшой наклон земной оси изменяет эффективную толщину атмосферы, которую необходимо преодолеть лучу света, для того чтобы достичь одной и той же площадки на поверхности Земли. При этом свет испускаемый Солнцем не остается неизменным, изменяется и интенсивность (летом больше, зимой меньше) и спектральный состав света, который достигает нас. Индекс цветопередачи позволяет оценить близость цветового оттенка к естественному освещению.

Разные стадии развития растения требуют освещения лучами из разных частей спектра. На начальной вегетативной стадии должна преобладать синяя часть спектра, тогда как на поздней репродуктивной — красно-оранжевая.

Источники фитосвета

  Цветовая температура различных источников света, используемых в растениеводстве

Применяются лампы разных типов, включая металлогалогенные, люминесцентные, накаливания, натриевые высокого давления и светодиодные.

Металлогалогенные лампы (МГ)

Металлогалогенные лампы излучают в синем спектре и хорошо заменяют условия весеннего и летнего естественного освещения.

Лампы накаливания

Обычные лампы накаливания излучают в красно-желтой части спектра и имеют низкую цветовую температуру (примерно 2700 K). Лампы такого типа не используются в качестве фитоосвещения, а только для подсветки растений в интерьере. Некоторые лампы накаливания имеют маркировку «grow lights» и покрыты светофильтром синего цвета, который уменьшает количество испускаемого ими красного света. Лампы со светофильтром не имеют особых преимуществ, поскольку фильтр лишь задерживает часть излучения в красной области спектра. Такие фитолампы имеют короткий срок службы около 750 часов и крайне не эффективны в плане расходования электроэнергии.

Люминесцентные лампы

  Люминесцентная фитолампа с полным спектром. Длина около 40 см

В настоящее время цветовая температура люминесцентных ламп может варьироваться в широких пределах: от 2700 K до 7800 K. стандартные люминесцентные лампы можно применять для выращивания овощей, трав или рассады. Стандартные лампы производят в два раза больше световой энергии на единицу электрической мощности, чем лампы накаливания и имеют ресурс непрерывной работы порядка 20000 часов. Иногда в качестве фитоламп используют менее эффективные, но дешевые люминесцентные лампы холодной цветовой температуры.

Высокоэффективные люминесцентные лампы производят вдвое больше световой энергии, чем стандартные лампы. Специальная форма светильника с очень тонким профилем особенно выгодна при использовании в боксах с ограниченной высотой. Высокоэффективные люминесцентные лампы выдают порядка 5000 Люкс на 54 Вт мощности и выпускаются с теплым цветовым оттенком (2700 K) и холодным (6500 K). Ресурс работы таких ламп составляет около 10000 часов.

Компактные люминесцентные лампы — это уменьшенные копии люминесцентных ламп, которые используют как при выращивании рассады дома так и в больших теплицах. Компактные люминесцентные лампы используются со специальными рефлекторами, которые направляют свет на растения, точно так же как и ГР-лампы. Выпускаются в вариантах: теплый/красный (2700 K), дневной свет (5000 K) и холодный/синий (6500 K) цветовых оттенках. Ресурс работы компактных люминесцентных фитоламп составляет около 10000 часов.

Натриевые лампы высокого давления (НЛВД)

Натриевые лампы высокого давления имеют жёлтое свечение (2200 K) с очень низким индексом цветопередачи 22. Как правило, такие лампы используются на поздних (или репродуктивных) стадиях роста. Если использовать фитолампы такого типа на ранних стадиях вегетативного роста, растения растут немного быстрее, чем обычно. Оборотной стороной этого процесса является слишком высокое и раскидистое растение с длинными междоузлиями. Натриевые лампы высокого давления ускоряют процесс образования цветков и плодов у растений. Растения используют красно-оранжевую часть спектра НЛВД-ламп в репродуктивных целях, что позволяет получать более высокие урожаи трав, овощей, фруктов или цветов. Иногда растения визуально, из-за особенностей цветового оттенка ламп, выглядят бледными и нездоровыми.

Натриевые лампы высокого давления имеют продолжительный срок службы и в шесть раз большую светоотдачу на 1 Вт электроэнергии чем стандартная лампа накаливания. Ввиду высокой эффективности натриевых ламп их используют в качестве дополнительной подсветки в теплицах, где необходимую им часть синего спектра растения получают из естественного освещения. Но в высоких широтах, где период недостатка солнечного света очень продолжительный, НЛВД-лампы должны сочетаться с другими источниками света для правильного роста. НЛВД-освещение может привлекать насекомых или других вредителей, что может представлять угрозу для растущих растений. Натриевые лампы высокого давления излучают много тепла, что может вызвать вытягивание стеблей, хотя при должном контроле температуры воздуха эта проблема не так актуальна.

Комбинация металлогалогенных ламп (МГ) и натриевых (НЛВД)

В комбинированной НЛВД/МГ лампе в одном рефлекторе сочетается металлогалогенная колба с натриевой колбой высокого давления, при этом может использоваться общий балласт или два индивидуальных балластных устройства. Комбинация синей металлогалогенной и красной натриевой лампы высокого давления, как утверждают производители, является идеальной по спектральному составу и крайне эффективной для растениеводства, хотя на самом деле представляет собой компромисс между двумя ситуациями. Лампы такого типа стоят дороже, а служат меньше. Из-за небольшого размера ламп охватываемая световым пятном площадь оказывается значительно меньше той, что получается при использовании стандартных ГР-ламп.

Переключаемые, конвертируемые, универсальные светильники

Переключаемые, конвертируемые, универсальные светильники — это светильники в которые можно установить металлогалогенную колбу или эквивалентную ей по мощности натриевую лампу высокого давления. Растениеводы используют такие светильники при выращивании рассады и в вегетативный период с установленной металлогалогенной лампой, а затем, в период созревания плодов, меняют её на натриевую лампу высокого давления. Для переключения светильника нужно заменить колбу и настроить соответствующий режим работы. Более распространены металлогалогенные конвертационные лампы для использования в НЛВД-светильниках.

Светодиоды

Последние разработки в светодиодной отрасли позволили производить недорогие, яркие, с большим сроком службы источники фитосвета. Большим преимуществом светодиодных источников является возможность получения излучения исключительно в фитоактивной части спектра. Привлекательность светодиодов для выращивания растений в помещениях обусловлена многими факторами. Среди них: низкая электрическая мощность, отсутствие балласта, низкое тепловыделение, что позволяет устанавливать светодиоды вплотную к растениям без риска повредить их. Также необходимо отметить, что использование светодиодов снижает испарение, приводя к удлинению периодов между поливами[2].

Существует несколько активных участков спектра: для хлорофилла и каротиноидов. Поэтому в светодиодном светильнике могут сочетаться несколько цветов, перекрывающих эти фитоактивные участки. Хотя более перспективными следует считать белые светодиоды, спектр которых близок к естественному солнечному.

Рекомендации по оптимальному сочетанию светодиодов сильно разнятся. Например, в одном из источников, для максимизации роста и здоровья растений рекомендуется следующая пропорция «12 красных светодиодов с длиной волны 660 нм плюс 6 оранжевых светодиодов с длиной волны 612 нм и один синий светодиод с длиной волны 470 нм»[3].

  Пурпурный оттенок светодиодного фитоосвещения

Также имеются публикации, в которых на период вегетативного роста рекомендуется отдавать приоритет светодиодам синего цвета (с длиной волны в районе середины спектра 400—500 нм). Для роста плодов и цветов рекомендуется увеличить долю светодиодов глубоко красного оттенка (с длиной волны от 630 до 670 нм). Следует отметить, что точность при выборе длины волны красных светодиодов более важна, нежели при выборе светодиодов синего спектра. Исследования показали полезность дополнительной подсветки растений светодиодами инфракрасного и ультрафиолетового спектра. При смешении красного и синего света получается свет пурпурного (розового) оттенка. Зелёный свет при искусственном освещении растений может применяться в эстетических целях для нейтрализации неприятного для глаз пурпурного свечения фитосветодиодов или для облегчения визуального контроля зеленых побегов и состояния почвы, поскольку глаз человека лучше всего различает детали именно в зелёной части спектра. Фотосинтетическая эффективность зелёного света крайне низка ввиду высокой степени отражения лучей данного спектра хлорофиллом.

Мощность светодиодов, получаемых по старой технологии, составляла сотые доли ватта, что не позволяло эффективно заменять ими ГР-лампы. Современные усовершенствованные светодиоды и светодиодные матрицы обладают мощностью, исчисляемой десятками и даже сотнями ватт, что делает их достойной альтернативой ГР-лампам.

Мощность и эффективность фитосветодиодов продолжает расти. Наиболее важными параметрами при выборе светодиодов являются энергетическая эффективность и спектральный состав излучения.

Световая эффективность

В следующей таблице приведена световая эффективность различных источников света

Требования к свету у растений

У каждого растения особые требования к освещению для правильного развития. Источники искусственного света должны имитировать условия освещения, к которым приспособлено растение. Чем больше растение, тем большее количество света ему требуется. При недостатке света растение перестает расти, независимо от прочих условий.

Например, овощные культуры растут лучше всего при естественном дневном свете, поэтому для выращивания при искусственном освещении им требуется постоянный интенсивный источник света, такой, как белый светодиод. Лиственные растения (например, филодендрон) растут в условиях постоянного затенения, для нормального роста им не требуется много света, поэтому будет достаточно обычных ламп накаливания.

Растениям необходимо чередование темных и светлых («фото»-) периодов. По этой причине освещение должно периодически включаться и выключаться. Оптимальное соотношение светлых и темных периодов зависит от вида и сорта растения. Так некоторые виды предпочитают длинные дни и короткие ночи, а другие наоборот.

Однако освещённость является световой величиной, то есть характеризует свет в соответствии с его способностью вызывать зрительные ощущения у человека и соответствующим образом зависит от спектрального состава света. Поэтому освещённость плохо подходит для использования при определении эффективности систем освещения в садоводстве. Вместо этого используются другие величины, такие как облучённость (энергетическая освещённость), выражаемая в Вт/м2, или фотосинтетически активная радиация (ФАР). Альтернативная величина измерения выражается в микромоль- фотонах в секунду (μmol/s) на единицу площади.

Искусственное освещение растений из космоса

В 1970-х годах известный американский специалист по ракетной технике Краффт Эрике[en] предложил освещать посевы из космоса отражённым солнечным светом при помощи специального спутника с огромной отражающей поверхностью (200—2550 квадратных миль в зависимости от орбиты), названного автором Солеттой, с яркостью 0,2—0,5 солнечной. Планировали развернуть этот отражатель в 1995—2005 гг. с затратами порядка 30—60 млрд долларов. Предполагалось, что это увеличит мировое производство сельскохозяйственных растений на 3—5 процентов и окупится менее чем за 20 лет[21], однако проект не был осуществлён.

См. также

Ссылки

  1. ↑ Светокультура — статья из Большой советской энциклопедии. 
  2. ↑ Гавриленко А. П. светодиодный свет для теплиц. ООО "ЭНОВА Лайт" (май 2016).
  3. ↑ Patent US6921182 - Efficient LED lamp for enhancing commercial and home plant growth – Google Patents. Google.com. Проверено 26 февраля 2013.
  4. ↑ Нормированный так, чтобы максимальное значение составляло 100 %.
  5. ↑ 1 кандела*4π стерадиан/40 Вт
  6. ↑ Waymouth, John F., "Optical light source device", US patent # 5079473, published September 8, 1989, issued January 7, 1992. col. 2, line 34.
  7. ↑ Keefe, T.J. The Nature of Light (2007). Проверено 5 ноября 2007. Архивировано 1 июня 2012 года.
  8. ↑ How Much Light Per Watt?
  9. ↑ Bulbs: Gluehbirne.ch: Philips Standard Lamps (German)
  10. ↑ Osram halogen (нем.) (PDF). www.osram.de  (недоступная ссылка — история). Проверено 28 января 2008. Архивировано 7 ноября 2007 года.
  11. ↑ Osram Miniwatt-Halogen. www.ts-audio.biz  (недоступная ссылка — история). Проверено 28 января 2008. Архивировано 17 февраля 2012 года.
  12. ↑ Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Проверено 16 апреля 2006. Архивировано 1 июня 2012 года.
  13. ↑ China energy saving lamp. Проверено 16 апреля 2006. Архивировано 17 февраля 2012 года.
  14. ↑ 1 2 Federal Energy Management Program (December 2000). «How to buy an energy-efficient fluorescent tube lamp» (U.S. Department of Energy). Проверено 2013-02-26.
  15. ↑ Department of the Environment, Water, Heritage and the Arts, Australia. Energy Labelling—Lamps  (недоступная ссылка — история). Проверено 14 августа 2008. Архивировано 24 января 2007 года.
  16. ↑ 1 2 Technical Information on Lamps (pdf). Optical Building Blocks  (недоступная ссылка — история). Проверено 14 октября 2007. Архивировано 27 октября 2007 года. Note that the figure of 150 lm/W given for xenon lamps appears to be a typo. The page contains other useful information.
  17. ↑ OSRAM Sylvania Lamp and Ballast Catalog. — 2007.
  18. ↑ 1 2 LED or Neon? A scientific comparison. Архивировано 9 апреля 2008 года.
  19. ↑ Why is lightning coloured? (gas excitations). Архивировано 17 февраля 2012 года.
  20. ↑ The Metal Halide Advantage. Venture Lighting (2007). Проверено 10 августа 2008. Архивировано 17 февраля 2012 года.
  21. ↑ Walter Sullivan "Huge Space Mirrors Proposed to Light the Night.” The New York Times. February 6, 1977

ru-wiki.org

особенности, режим, своими руками, лампы, светильники, светодиодные, система, расчет

Содержание материала

Большинству растений требуется 12-16 часов освещенности в сутки для нормального развития, если продолжительность освещенности падает до 10 часов и меньше, то развитие затормаживается. Но и круглосуточное освещение растений может оказаться вредным. Итак, давайте тщательно разберемся, какое освещение нужно растениям и как его обеспечить в своей теплице.

Зачем растениям свет

Из курса биологии известно, что растения потребляют углеводороды, большую долю которых вырабатывают самостоятельно путем фотосинтеза. Чтобы процесс фотосинтеза запустился, необходима световая энергия, которую растение получает с помощью пигмента хлорофилла. Для фотосинтеза большую роль играют количество получаемого света, температура воздуха и земли, наличие углекислого газа и воды. Важно не только количество света, но и его качество – спектр излучения, а также сочетания периодов освещенности и затемнения (фотопериодизм).

Растения длинного дня положительно воспринимают удлинение периода освещенности, они начинают лучше расти, зацветают. В этих целях используют специальные лампы для освещения растений. Но существуют и растения короткого дня, для которых повышение освещенности может иметь негативные последствия для цветения. Промежуточное положение занимают растения, цветение которые почти не зависит от смены режимов освещения, но свет и для них определяет, как быстро развивается растение, растет стебель и т.д. Эти особенности растений необходимо учитывать и после подбора ламп нужно еще составить оптимальное расписание их работы и отключения в теплице.

Какое освещение для растений самое оптимальное

Исследования в целом показывают, что свет из красной области спектра полезен в период цветения, а синий свет необходим во время вегетативного роста. Выдвигаются предложения ограничиться этими двумя цветами спектра и освещать ими растения в соответствующие периоды. Но не все так просто. Растения генетически приспособились к солнечному свету, который имеет белый цвет, объединяя в себе все цвета спектра. Развиваясь только под монохромным светом, овощи могут утратить свои вкусовые качества и полезные свойства, хотя цветение может наступать раньше и развитие проходить быстрее. Поэтому монохромный свет, который например, дает светодиодное освещение растений, больше подойдет для цветов.

Применяя искусственное освещение растений, одновременно стоит предпринять усилия, чтобы улучшить поступление и солнечного света. Для этого непрозрачную стену теплицы (например, граничащую с другим строением) надо накрыть светоотражающим материалом или, по крайней мере, покрасить в белый цвет. Но зимой солнечного света все равно будет не хватать из-за короткого дня. Недостаток света незамедлительно отражается на росте и развитии. Поэтому искусственное освещение для растений, разводимых в теплицах воспринимается как необходимое условие для повышения урожайности.

Освещение для теплицы (видео)

Спектр освещения для растений

Для фотосинтеза растения используют волны длиной 400-700 нм, человеческий глаз, кстати, способен воспринимать волны длиной от 380 до 780 нм. Используемая растениями часть спектра носит название фотосинтетически активного излучения и измеряется в микромолях в секунду (µмоль/с). Хотя ни инфракрасное, ни ультрафиолетовое излучение в фотосинтезе не принимают участия, они все равно определенным образом влияют на процессы, связанные с ростом побегов, цветением, окраской листьев и старением.

Также рекомендуем прочитать:

Интенсивность искусственного освещения зависит от количества излучаемых фотонов. Для измерения количества энергии, которую поглощает растение (имеющее определенную площадь, на которую и падает свет) за единицу времени используют µмоль/м2*с. Спектр освещения для растений принципиален, так как от него зависит степень реакции на излучение. То есть для растений важны как количество света, так и его состав, спектр. Одинаковое количество желтого и зеленого света вызовут разную реакцию у растения, от желтого света реакция будет значительно интенсивнее.

Применяя это к лампам для освещения растений, можно сказать, что более эффективны будут лампы, излучающие свет в спектре к которому растение более восприимчиво.

Каким бывает освещение для растений

Искусственное освещение для растений можно подразделить на 2 вида. Один вид подразумевает организацию дополнительного освещения для растений, чтобы они получали необходимую им норму световой энергии в течение дня. Этот вид освещение должен создавать световой поток мощностью ок. 400-1000 µмоль/м2*с.

Другой вид освещения — фотопериодический, т.е. лампы для освещения растений настраиваются на работу ночью, чтобы удлинить период получения света. Этим достигается ускорение или замедление цветения. Дозы света подаются в размере 5-10 µмоль/м2*с.

В конкретных случаях эффективным может оказаться цикличное освещение растений на короткие промежутки времени.

Лампы для освещения растений

Распространенным источником света, применяемым в теплицах, являются натриевые лампы высокого давления. Для них характерна энергоэффективность, близкий к оптимальному спектр излучения. В большинстве моделей этих ламп спектр смещен к зонам красного и синих цветов из-за повышенного давления паров натрия. Под воздействием дополнительных порций синего света процессы фотосинтеза протекают более интенсивно.

Автоматические процессы в теплице, освещение (видео)

Также для освещения растений применяются дуговые ртутные лампы, люминесцентные лампы. Обычные лампы накаливания сильно проигрывают по эффективности ранее упомянутым видам ламп. Они потребляют много энергии, что сильно повышает себестоимость выращиваемых овощей. Для многоуровневой фермы целесообразно будет попробовать светодиодное освещение растений.

Освещение в теплице (20 фото)

Отзывы и комментарии

Вы нашли ошибку в тексте? Пожалуйста, выделите ее и нажмите Ctrl+Enter. Спасибо!

Рейтинг:

Загрузка...

dachadecor.ru

Искусственное освещение для растений - виды, выбор

Подробности Категория: Условия выращивания

Зимнее солнце редко балует нас своим появлением. Это же касается и потребности растений в солнечном свете. Летом часто приходится затенять растения, прятать их от прямых солнечных лучей. Зимой же редкое проявление солнечных деньков является поводом порадовать растения, переставив их ближе к окну или на подоконник, в зависимости от потребности в солнечном свете того или иного растения. Причем на подоконнике с солнечной стороны зимой можно расставить абсолютно все растения независимо от их восприятия солнечной энергии, так как энергия зимнего солнца не такая существенная.

 

Признаки нехватки освещения

Об острой нехватке солнечного света можно узнать по внешнему виду растения. Зачастую проявление этого можно спутать с другими проблемами растений, такими, как пересыхание почвы или ее излишняя влажность. Первый сигнал нехватки естественного освещения подадут листья растения. Молодые листья будут намного мельче, а их цвет не таким ярким и насыщенным. Кроме того, возможно высыхание и выпадение листьев нижнего ряда. Для цветущего растения первым признаком нехватки солнечного света будет прекращение образования цветков, их малое количество и размер, а также высыхание и отмирание. Очень частая ситуация, когда растение совсем перестает подавать признаки роста, новые почки не образуются, а имеющиеся листья высыхают и отмирают.

 

Выбор искусственного освещения

 

Для решения этой проблемы люди стремятся передвинуть растения ближе к окну или разместить их непосредственно на подоконнике, но это не всегда возможно по причине ограниченного пространства в хорошо освещаемой зоне. В этой ситуации на помощь растениеводам приходит искусственное освещение от всевозможных светильников и ламп. Однако необходимо учитывать, что свет, исходящий от ламп накаливания является не совсем полезным, а в некоторых случаях даже губительным для растений. Лучше всего использовать люминесцентные лампы, свет от которых больше походит на естественный. К тому же потребление электроэнергии при использовании этих ламп намного ниже, а тепло от них практически не исходит.

Все рекомендуемые значения расстояний от люминесцентных ламп до растений являются условными. Оптимальное расстояние зависит не только от общей мощности установленных ламп, но и от общей освещенности всего помещения. При размещении растения в помещении, обладающим освещением, приближенным к естественному, расстояние до ламп должно быть намного больше, чем расстояние от ламп до растений в совсем темной комнате. В любом случае при устройстве искусственного освещения, необходимо обеспечить его равномерность, периодически передвигая и вращая растение. Рекомендуемые расстояния от люминесцентных ламп до растений выглядят следующим образом: от 0,3 до 0,6 метра для растений декоративно-лиственных и от 0,15 до 0,3 метра – для декоративно-цветущих. Для примера можно сказать, что цветущий фикус должен располагаться от лампы в 20 Вт на расстоянии около 0,3 метров.

Кроме интенсивности освещения необходимо следить и за его продолжительностью. В этом случае все зависит от наличия естественного освещения. В общем, это время должно равняться времени от шести до восьми часов. Работать лампы должны в течение нескольких часов с утра и несколько часов вечером. Днем же будет достаточно естественного освещения. В темные пасмурные дни продолжительность работы ламп можно увеличить до двенадцати часов, а в особо солнечные – снизить до трех – четырех.

Даже при наличии отлично устроенного искусственного освещения полностью отказываться от естественного не стоит, так как для многих растений наличие солнечного света является обязательным условием цветения.

В случае полного отсутствия возможности естественного освещения растений, следует предусмотреть не только продуманное расположение искусственного, но и обеспечить грамотный полив растений и необходимую температуру. Регулярное проветривание помещения также является необходимым условием для успешного роста растений в помещениях без возможности естественного освещения. Освещение в таких помещениях должно длиться столько, сколько длиться световой день в то или иное время года: до четырнадцати часов – летом и до девяти – зимой. В таких помещениях следует обеспечить освещение не только в зоне расположения растения, но и площади всей комнаты.

Для выращивания растений в условиях наличия только искусственного освещения подойдут растения, которые способны обходиться без естественного солнечного света. К ним можно отнести следующие виды растений: фиалка узамбарская, филодендрон, панданус, монстера, китайский розан, гликсония и многие другие неприхотливые растения.

Статьи по теме:

Добавить комментарий

naklymbe.com

Освещение для растений

Освещение для роста растений играет важнейшую роль. С его помощью они вырабатывают питательные вещества, так что качество света напрямую влияет на внешний вид комнатных цветов.

Влияние света на растения

Как и у всего живого, приспособления к свету у растений заложены природой. Такие способности у каждого вида растений разные. Есть виды, которые могут хорошо адаптироваться и не особо привередливы к освещению. Для других же растений неправильный световой режим грозит гибелью, многие виды перестают цвести или прекращают рост.

Влияние света на растения заключается в понижении уровня хлорофилла при избытке освещения. В этом случае цвет листвы приобретает желтовато-зеленый оттенок. При слишком интенсивном освещении рост цветов замедляется, они приобретают более приземистый вид, а листья становятся широкими и короткими.

Если листва приобрела бронзово-желтый оттенок, то это сигнал о значительном избытке света в помещении, что приносит вред растениям. Вследствие такого воздействия на листьях появятся ожоги.

Освещение для комнатных растений

Освещение для растений разных видов следует учитывать при подборе места в квартире. Есть несколько основных видов растений в зависимости от их предпочтений относительно интенсивности света:

  1. Растения, предпочитающие затенение. Такие виды нельзя ставить на места с прямыми лучами солнца. Зато можно смело ставить в углах комнаты. В зимний период тенелюбивые растения нуждаются в дополнительной подсветке. В идеале такие растения следует ставить на расстоянии 3-4 метров от окна.
  2. Растения, предпочитающие полутень или рассеянный свет. Комнатные растения, которые цветут, а также травянистые виды особенно прихотливы. Это касается и пестролистных видов. Такие растения очень любят рассеянный свет, но гибнут при попадании прямых лучей солнца. Если света слишком мало, то они перестают цвести и теряют яркость окраски листвы. Лучше всего они будут себя чувствовать на расстоянии 1-2 метра от окна.
  3. Растения, которые любят много света. Такие виды требуют максимального освещения и совершенно не боятся южных окон.

Выращивание растений при искусственном освещении

В зимний период дополнительно освещать необходимо практически все виды растений. Так как световой день становится слишком коротким, приходится использовать лампы. Многие думают, что дополнительное освещение для растений создают люстры или настенные бра. Это ошибочное мнение. Лампы накаливания излучают тепло, что губительно скажется на состоянии цветов. Лучше отдать предпочтение люминесцентным лампам. Как только вы установите ее возле растений, недели две пронаблюдайте за их состоянием. В случае необходимости добавьте еще одну лампу или приблизьте растение к источнику света.

 

womanadvice.ru

Освещение для растений - Век живи

Свет без преувеличения можно назвать источником жизни для растений и главным условием их успешного роста. Без света невозможна реакция фотосинтеза, обеспечивающая растение питанием, и оно может медленно погибнуть от голода. При недостатке света растения слабеют и не могут сопротивляться вредителям и заболеваниям. В комнатных условиях, а также в оранжереях и теплицах естественного света не хватает не только зимой, но и летом, а поэтому дополнительное освещение растений электроосветительными приборами остается одним из главных факторов благополучного роста и здоровья декоративных, аквариумных и даже овощных зеленых питомцев, растущих в наших зимних садах и на подоконниках.

Содержание

Характеристики осветительных электроприборов ↑

Создавая искусственное освещение для комнатных растений, следует четко уяснить, какую из двух возможных функций оно будет выполнять:

Если ваши зеленые питомцы расположены вблизи окон, на застекленной террасе или лоджии, то они скорее всего нуждаются в периодическом досвечивании, которое возместит недостаток естественного света и благотворно скажется на их росте, развитии и цветении. В этом случае выбор ламп не имеет особого значения, а использование двухрежимного таймера-реле позволит в автоматическом режиме обеспечивать растения необходимым количеством света по утрам и вечерам.

Довольно часто имеет место выращивание растений при искусственном освещении, то есть в помещениях без окон или в удаленных от окон уголках комнаты. В ситуации, когда ваши растения вообще не знакомы с естественным дневным светом, для них необходимо подбирать лампы со специальным спектром, соответствующим потребностям декоративных комнатных или аквариумных зеленых насаждений.

Ватты, люксы, люмены ↑

Чтобы правильно подобрать лампы для освещения растений, каждому цветоводу необходимо вспомнить из школьного курса физики, что такое мощность лампы, световой поток, освещенность, на что они влияют и в каких единицах измеряются.

Мощность электрической лампы измеряется в ваттах.

Световой поток — основная характеристика источника света, измеряется в люменах и чем выше показатель, тем больше света излучает лампа.

Освещенность — это характеристика освещаемой источником света поверхности, измеряющаяся в люксах. От показателя освещенности зависит сколько времени понадобится для освещения того или иного участка поверхности.

Таким образом, световой поток 1 Лм, освещая площадь 1 кв.м, обеспечивает ей освещенность 1 Лк. Проектируя систему искусственного освещения для своей домашней оранжереи, следует учитывать два важных правила:

  1. Величина освещенности обратно пропорциональна величине квадрата расстояния от источника света до поверхности. То есть приподняв лампу всего на 50 см выше ее предыдущего уровня, например, полметра над растениями, мы увеличиваем площадь освещения, но снижаем уровень освещенности в 4 раза.
  2. Уровень освещенности зависит от угла, под которым направлен свет на поверхность. По аналогии с солнцем в зените, источник света прожекторного типа обеспечит максимальную освещенность, если он расположен перпендикулярно к освещаемой площади.

На что влияют спектр и цвет света ↑

Естественный или искусственный свет — это совокупность электромагнитных волн различной длины, называемая спектром света. Спектр света состоит из составляющих спектральных частей, каждой из которых соответствует свой участок спектра определенного цвета, видимый или невидимый. Видимая часть спектра воспринимается зрением как белый свет, а невидимые — это ультрафиолетовое и инфракрасное излучения. Все части светового спектра играют важную роль в развитии растений.

В процессе фотосинтеза хлорофилл и другие пигменты растения при участии света поглощают углекислый газ и выделяют кислород, преобразуя энергию света в энергию, необходимую для жизнедеятельности. Причем, «работающие» в реакции пигменты используют свет красного и синего участков спектра. Развитием корневой системы, цветением и созреванием плодов «руководят» пигменты, пик чувствительности которых расположен в красной части спектра. Правильно организовав искусственное освещение растений в той или другой части спектра и меняя продолжительность светлого и темного периодов, можно ускорить либо замедлить развитие растения, сократить вегетационный период или управлять другими процессами.

Важнейшие спектрально-цветовые характеристики осветительных приборов указываются на их маркировке следующими показателями:

  • цветовая температура лампы ССТ указывает цвет излучения, измеряется в градусах по шкале Кельвина и соответствует температуре, при которой цвет раскаленного металла наиболее близок цвету света осветительного прибора;
  • коэффициент цветопередачи лампы CRI характеризует соответствие цвета освещаемого объекта его истинному цвету, измеряется величиной от 0 до 100.

Например, маркировка на лампе «/735» означает, что это прибор с характеристиками CRI=70-75% и ССТ=3500°К, а маркировка «/960» характеризует лампу с CRI=90% и ССТ= 6000°К, цвет излучения которой близок дневному свету.

Важно запомнить! В свете лампы, предназначенной для освещения растений обязательно должны присутствовать цвета и красной, и синей частей спектра.

Типы ламп для освещения растений ↑

Для досвечивания или полного искусственного освещения декоративных комнатных растений используются следующие типы осветительных приборов:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Применяемые лампы накаливания ↑

Самый старинный хорошо всем знакомый тип лампы, в котором источником света служит раскаленная вольфрамовая спираль, помещенная в стеклянную колбу. Они ввинчиваются в патрон и не требуют для подключения специальной аппаратуры. Помимо обычных «лампочек Ильича» к группе ламп накаливания относят и некоторые другие, усовершенствованные виды осветительных приборов:

Характеристика галогенных ламп ↑

Внутрь колбы этих ламп закачивается смесь газов ксенона и криптона, обеспечивающая более яркое свечение и долговечность спирали накаливания. Нельзя путать с газоразрядными металлогалоидными лампами.

Чем хороши неодимовые лапы? ↑

В стекло ламп этого вида добавляется сплав неодим, который обеспечивает поглощение излучения желто-зеленой части спектра. В результате в свете неодимовой лампы освещаемая поверхность кажется ярче, хотя количество излучаемого света при этом не увеличивается.

Общим недостатком ламп накаливания является отсутствие в их спектре излучения синего цвета и слишком низкая светоотдача 17-25 Лм/Вт, а поэтому для освещения растений они не очень подходят. Кроме того, лампы накаливания слишком нагреваются и при расположении на высоте ниже 1м они могут вызвать ожог растений, а на высоте выше 1 м не способны обеспечить эффективного освещения.

Газоразрядные приборы накаливания ↑

В отличие от ламп накаливания световое излучение в газоразрядных лампах является результатом электрического разряда между двумя электродами в смеси газов. В зависимости от состава газовой смеси они могут излучать свет любой части спектра. Различают газоразрядные лампы

  • низкого давления — люминесцентные лампы, широко применяющиеся для освещения жилых и других помещений;
  • высокого давления — область применения этого типа ламп гораздо шире, от уличного освещения до освещения объектов специального назначения.

Для подключения всех видов газоразрядных ламп, за исключением последних моделей энергосберегающих люминесцентных приборов, требуется специальная пускорегулирующая аппаратура — балласт, несмотря на то, что цоколь некоторых из них внешне похож на цоколь обычной лампы накаливания.

Люминесцентные лампы низкого давления представляют собой стеклянную трубку, с обеих сторон которой расположено по паре электродов, соединенных между собой вольфрамовой спиралью. Внутри трубки находится смесь инертного газа и паров ртути, а внутренняя поверхность стеклянной колбы-трубки покрыта специальным составом — люминофором. В результате электрического разряда в парах ртути генерируется невидимое глазом ультрафиолетовое излучение, трансформируемое люминофором в видимый белый свет. Существует три вида люминесцентных ламп.

Люминесцентные лампы общего назначения ↑

Лампы этого типа широко используются для освещения помещений, отличаются высокой светоотдачей 50-70 Лм/Вт, низким тепловым излучением и длительным сроком службы. Их вполне можно использовать для периодического досвечивания комнатных растений, но из-за ограниченного спектра использование подобных ламп для регулярного освещения домашней оранжереи не всегда оптимально.

Люминесцентные устройства спецназначения ↑

Этот тип люминесцентной лампы отличается от предыдущего составом люминофора, нанесенного на внутреннюю поверхность стеклянной трубки. В результате усовершенствования спектр излучаемого лампой света приближен к спектру, который необходим растениям. При одинаковой мощности, лампа излучает большее количество света именно «полезной» части спектра, а поэтому подходит для любых потребностей: требуется ли полное освещение для комнатных растений, периодическое досвечивание либо декоративная подсветка.

Компактные люминесцентные лампы ↑

Главное отличие этого вида люминесцентных ламп от двух предыдущих состоит во встроенном в цоколь балласте, благодаря которому они легко интегрируются в любую схему освещения квартиры или дома без дополнительной дорогостоящей аппаратуры, то есть просто ввинчиваются в любой патрон соответствующего размера. Являясь достойной заменой обычной лампе накаливания в качестве осветительного прибора, недостаточно широкий спектр компактной энергосберегающей лампы не способен обеспечить эффективного освещения комнатных растений. К тому же существенным их недостатком является и размер лампы: компактную люминесцентную лампу мощностью от 20 Вт (соответствующей мощности лампы накаливания 100 Вт) можно использовать для освещения только небольшой группы или отдельно стоящего растения, разместив на высоте 30-40 см.

Более эффективны в роли осветительных приборов для растений компактные люминесцентные лампы повышенной мощности 36-55 Вт. От обычных люминесцентных ламп они отличаются более высокой светоотдачей и долгим сроком службы, а их отличная светопередача CRI=90% и широкий спектр, содержащий красные и синие цвета, способны обеспечить растениям комфортное освещение. Использовать такие лампы рекомендуется с рефлектором в тех случаях, когда для освещения домашнего цветника достаточно суммарной мощности осветительных приборов не более 200-300 Вт. Пока единственный их недостаток — слишком высокая цена и необходимость электронного балласта для подключения.

Газоразрядные лампы высокого давления являются одним из самых ярких источников света, отличаются высокой светоотдачей и удобными компактными размерами. Одна лампа способна эффективно освещать растения на достаточно обширной площади. Подключаются к электросети лампы этого типа через специальный балласт, а использовать для освещения растений их рекомендуется в случаях, если требуется очень много света, которое не обеспечивают осветительные приборы суммарной мощностью 200-300 Вт. Для освещения домашних оранжерей и теплиц используются следующие виды газоразрядных ламп высокого давления:

  • ртутные;
  • натриевые;
  • металлогалоидные, которые иногда называют металлогалогенными.

Ртутные лампы высокого давления ↑

Самое старое поколение газоразрядных ламп. Если на внутреннюю поверхность колбы не нанесено покрытие, отличаются очень низким коэффициентом цветопередачи и неприятным синеватым цветом излучения. Ртутные лапы последнего поколения покрыты изнутри специальным составом, улучшающим их спектральные характеристики, и некоторые производители даже адаптировали лампы этого типа для освещения растений. Но такой недостаток, как низкая светоотдача пока не устранен.

Натриевые газоразрядные лампы ↑

Эффективные яркие лампы с высоким показателем светоотдачи, отличающиеся весьма высоким ресурсом 12-20 тыс. часов Спектр натриевых ламп представлен, в основном, красной зоной, регулирующей процессы корнеобразования и цветения растений. Одна газоразрядная натриевая лампа мощностью от 250 Вт, оснащенная встроенным отражателем, способна эффективно освещать внушительную площадь зимнего сада или большой коллекции растений. Для баланса спектра излучения рекомендуется чередовать натриевые лампы с ртутными или металлогалоидными.

Совершенные металлогалоидные лампы ↑

Самый совершенный тип газоразрядных ламп в качестве осветительных приборов для растений. Отличаются высокой мощностью, большим ресурсом и оптимально сбалансированным, комфортным для растений спектром. Для подключения металлогалоидной лампы требуется специальный патрон, несмотря на то, что внешне ее цоколь практически не отличается от цоколя лампы накаливания. Недостаток — слишком высокая по сравнению с другими видами ламп стоимость.

Светодиодные осветительные устройства ↑

В отличие от всех использующихся для освещения либо подсветки растений приборов светодиодное осветительное устройство — это не лампа, а твердотельный полупроводниковый прибор, в котором нет хрупкой стеклянной колбы, наполненной небезопасным газом, нити накала и ненадежных подвижных элементов. Излучение в светодиоде генерируется при прохождении электрического тока через специальный искусственный кристалл. Основная энергия при этом расходуется на создание светового потока, процесс проходит без выделения тепла — очень важное преимущество, позволяющее создать идеальное освещение для аквариумных растений, страдающих от перегрева.

Прогрессивное светодиодное освещение для растений любого типа по праву считается технологией будущего. Светодиоды отличаются непревзойденным ресурсом до 100 тыс. часов непрерывной работы, расходуют на 75% меньше электроэнергии по сравнению с традиционными осветительными приборами и способны обеспечить комфортный для развития растений спектр излучения. Очень важно, что отсутствие в излучении ультрафиолетовой и инфракрасной частей спектра гарантирует полную безопасность светодиодных приборов для людей и растений.

Цвет светодиодного освещения зависит от состава кристалла, через который протекает электроток, а интенсивность излучения можно регулировать, изменяя силу тока. Если один осветительный прибор состоит из нескольких кристаллов, каждый из которых излучает свет определенной части спектра, то можно управлять силой тока каждого из них. Единственный недостаток светодиодных источников света — они весьма дороги по сравнению с традиционными лампами.

Таким образом, выбор осветительных приборов позволяет каждому садоводу, независимо от бюджета, создать для своих растений нормальное освещение.

Самый дешевый вариант — это лампы накаливания или компактные люминесцентные лампы со встроенным балластом, которые подходят к обычным патронам.

Для освещения небольшого количества близко расположенных друг к другу невысоких растений отлично подходят компактные люминесцентные лампы. Высокие отдельно стоящие растения лучше освещать светильниками прожекторного типа натриевыми газоразрядными лампами небольшой мощности до 100 Вт.

Расположенные на стеллажах или подоконниках растения примерно одного роста лучше всего освещать протяженными или компактными люминесцентными лампами большой мощности. Использование рефлектора с люминесцентными лампами существенно увеличивает полезный поток света.

Для освещения большого зимнего сада или обширной коллекции растений можно использовать один или несколько потолочных светильников с мощными (от 250 т) газоразрядными натриевыми или металлогалоидными лампами.

Наконец, для каждого из перечисленных случаев идеально подойдет современное светодиодное освещение, высокую стоимость которого с лихвой компенсируют комфорт, блеск зеленых листьев и разноцветье цветущих бутонов ваших любимцев.

Материалы: http://strmnt.com/sad/l-diz/u-svet/osveshhenie-dlya-rastenij.html

  • View the full image
Исскуственное освещение для растений
Какие растения нуждаются в подсветке
Какой свет нужен растениям
Виды осветительных приборов
Как правильно устанавливать подсветку

Зимой домашний садик как никогда нуждается в солнечном освещении. Световой день становится значительно короче, растениям не хватает солнечной энергии. Они начинают вянуть, желтеть, о цветении в зимнее время не идет и речи. Но ситуация поправима благодаря искусственному освещению. Цветоводы прибегают к подсветке – единственному решению проблемы. Так, зимой можно добиться и цветения, и бурного роста домашних растений, и даже плодоношения некоторых культур.

Все растения можно разделить на категории – теневыносливые и светолюбивые. Первая группа может обойтись и без подсветки. Теневыносливые культуры отличаются даже внешним видом. У них темно-зеленая листва, толстые, мясистые стебли, размер листьев, как правило, крупный. Если в квартире преобладает такой вид цветов, о дополнительном освещении можно не думать. Обычно теневыносливые зеленые питомцы зимой отдыхают и не нуждаются в ярком или рассеянном освещении. К теневыносливым культурам относят:

Другое дело светолюбивые культуры. Они плохо развиваются без достаточного освещения. Некоторым видам, чаще тропическим, нужен яркий солнечный свет. Некоторым – рассеянный. Зима для таких растений – настоящее бедствие. Если света недостаточно, о цветении и сочной зелени можно забыть. Поэтому цветоводу необходимо устанавливать дополнительное освещение. К светолюбивым растениям относят:

Это лишь самые распространенные комнатные растения, любящие яркий свет. При покупке того или иного цветка, всегда интересуйтесь его потребностями в свете. Это очень важно, иначе растение может погибнуть при недостатке или избытке света. Не забывайте, что только благодаря солнечному свету, растение может в принципе жить и развиваться.

По сути, даже теневыносливые культуры нуждаются в рассеянном свете. Зимой он никогда не будет лишним. Главное правильно выбрать фитолампу и установить ее в нужном месте.

Ответ на этот вопрос, казалось бы однозначный – солнечный. Но это не совсем так. Растительный мир воспринимает солнечный свет совсем иначе, не так, как это делает человек.

Для нормального развития и роста цветам нужен красный, оранжевый, синий и фиолетовый спектр.

Как видите, далеко не все цвета из солнечных лучей воспринимаются растениями. Поэтому подсветка будет излучать именно эти спектры, нужные растениям.

Благодаря красному и оранжевому свету запускается процесс фотосинтеза, без которого существование растения невозможно. Синий и фиолетовый спектры необходимы для роста, его регулировки. Опытные цветоводы знают, что для проращивания семян и развития молодых росточков нужен красный, оранжевый свет. Для уже сформировавшихся растений – смешанный или синий, фиолетовый свет. Разобравшись с тем, какой свет нужен растениям, можно выбирать лампу.

В садовых центрах или специальных магазинах, торгующих осветительными приборами, вам предложат широкий спектр ламп для растений. Неопытный цветовод может растеряться от такого выбора. Прежде всего, следует усвоить раз и навсегда, что обычная лампочка Ильича не подойдет для подсветки растений. Нужно выбирать либо люминесцентные, либо газоразрядные, либо светодиодные лампы:

  • Люминесцентные лампы. Этот тип ламп, пожалуй, самый распространенный у цветоводов. Люминесцентные лампы недорогие и дают нужный свет растениям. Служат довольно долго, их удобно размещать над домашним садиком. Некоторые виды культур, например сенполия, цветут под этими лампами в зимнее время. Излучаемый спектр – красный и синий. Если вы хотите остановить выбор на этих лампах, имейте в виду, что для высокорослых растений (более 1 метра) они не подойдут. Их будет недостаточно. Самые продаваемые типы люминесцентных ламп для растений – это марка Osram, Fluora.
  • Газоразрядные лампы. В этой категории ламп выделяют три группы – ртутные, металлогалоидные и натриевые лампы. Самыми лучшими из них считаются металлогалоидные подсветки. Они излучают все необходимые для растений спектры солнечного света. Натриевые лампы больше подходят для проращивания молодых росточков, так как излучают красный и оранжевый свет. Ртутные лампы не рекомендуются к установке. В целом газоразрядные лампы целесообразней устанавливать в больших помещениях – теплицах, оранжереях или больших зимних садах. Для домашнего использования лучше выбрать люминесцентную лампу.
  • Светодиодные лампы. Светодиодные лампы – последняя разработка в мире осветительных приборов. Эти лампы идеальны со всех сторон. Они суперэкономичны, излучают весь спектр света, необходимый для растений и обладают достаточной мощностью. У этих ламп есть один недостаток – высокая стоимость. Хотя, приобретая набор таких ламп, можно уже не беспокоиться об их замене в будущем. Лампы служат настолько долго, что экономия от такой покупки будет весьма ощутима.
  • Рефлекторы и отражатели. Вкупе с основной подсветкой принято устанавливать светоотражатели. Так, излучаемый свет не рассеивается, он отражается от рефлектора и распространяется на растения. Отражатели можно и не покупать. Их может заменить белый, матовый ватман или пищевая фольга, ее матовая сторона. Часто цветоводы устанавливают такие отражатели на подоконниках, в результате, солнечный свет не рассеивается, растения получают намного больше света, чем без рефлектора.

Если решено устанавливать люминесцентную лампу, отражатель также понадобится. Цветовод добьется равномерного распространения света в своем домашнем садике.

Очень важно не только выбрать правильную лампу, но и корректно ее установить. Многие начинающие цветоводы делают одну и ту же ошибку – подвешивают лампы слишком высоко. Чаще лампы нужно подвешивать на расстоянии 25-30 см от самых верхних листьев. Для теневыносливых растений лампы размещают на расстоянии 40 см. Лампа должна располагаться строго над растением, а не сбоку или снизу.

Помимо ламп установите светоотражатели по разные стороны от вазонов так, чтобы высота рефлектора полностью соответствовала высоте растений и была чуть выше их.

Если растение расположено на подоконнике, разместите отражатели со всех сторон, включая пространство со стороны комнаты. В качестве отражателей нельзя устанавливать зеркала, так как они не отражают, а поглощают свет. Поэтому толку от них не будет.

Старайтесь следовать этим простым правилам и света для растений будет достаточно. Немаловажным считается и время подсветки. Нельзя включать лампы и оставлять их на сутки. Разработайте режим согласно потребностям цветов. Включайте лампу за 2 часа до рассвета, затем ее можно включить, когда спустятся сумерки. В общей сложности цветам нужно 10-12 часов дневного света. Приплюсуйте к основному, естественному световому дню то количество часов, которое бы вкупе составило число 12. Обычно это два часа до рассвета и два-три после заката. Таким образом, лампа будет работать максимум по 5 часов в день в зимнее время.

Больше информации можно узнать из видео:

  • При установке лампы всегда имейте в виду, что по мере роста растения придется поднимать осветительный прибор выше. Устанавливайте лампы на специальные держатели, высоту которых можно регулировать.
  • Уже из опыта цветоводы могут определить примерное количество ламп на растение в зависимости от его вида. Так, для цитрусовых, филодендронов и монстер будет достаточно одной люминесцентной лампы, размером 60 см + установка рефлекторов. Для высокорослых растений, более одного метра в высоту, понадобиться две люминесцентные лампы, размером более 1 метра + рефлекторы.
  • Не забывайте, что расстояние между растением и лампами для высокорослых культур составляет 40 см, не менее. Расстояние между самими лампами – не менее 30 см.
  • Если у вас большая оранжерея, устанавливайте разные типы ламп. Так растения наверняка получат нужный спектр излучения.
  • Если речь идет о выращивании овощей в домашних условиях, то в арсенале должны быть натриевые лампы и люминесцентные. Первые нужны для подсветки молодых ростков, вторые – для роста сформировавшихся растений.

Ничего сложного в установке подсветки нет, главное учесть все нюансы и следовать советам опытных цветоводов и овощеводов. Не забывайте о своих любимцах зимой, дайте им самое главное для их жизни и развития – свет!

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

На форуме есть вопросы без ответов, помогите участникам, а они помогут Вам.

(c) 2012 - 2017 MegaOgorod.ком - Журнал дачников и садоводов.

Материалы: http://megaogorod.com/atricle/2438-iskusstvennoe-osveshchenie-dlya-rasteniy-vidy-lamp-i-ih-ustanovka

vekoff.ru