Лекарственные растения и травы

Меню сайта

Из чего состоит стенка растительной клетки? Оболочка растений состоит из


какие молекулы вещества образуют оболочку растительной клетки

Вы видимо хотели спросить: "Молекулы КАКОГО ВЕЩЕСТВА образуют оболочку растительной клетки? "... :))

Клетка любого организма представляет собой целостную жи­вую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетки осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками. Клеточная оболочка окружает собственно клетку со всех сторон и служит связующим звеном между ней и соседними клетками, обеспечивая, таким образом, единство и целостность всего растительного организма. В жестких оболочках растительных клеток образуются каналы, в которых располагаются тончайшие тяжи цитоплазмы – плазмодесмы. Благодаря этому, осуществляются межклеточные взаимодействия. Иными словами, у растений клеточные оболочки призваны обеспечивать те функции, которые у животных выполняют скелет, кожа и система кровообращения (т. е. опорную, защитную и транспортную. ) Не удивительно поэтому, что в ходе эволюции у растений возникли весьма разнообразные по структуре и химическому составу типы клеточных стенок. Собственно говоря, растительные клетки во многом различают и классифицируют именно по форме и природе клеточных стенок.

Оболочка, как правило, бесцветна и прозрачна. Она легко пропускает солнечный свет. Оболочки соседних клеток как бы сцементированы межклеточными веществами, образующими так называемую срединную пластинку. Вследствие этого соседние клетки оказываются отделёнными друг от друга стенкой, образованной двумя оболочками и срединной пластинкой. Это и даёт основание называть оболочку также клеточной стенкой.

Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Оболочку эмбриональных тканей и клеток, растущих растяжением, называют первичной. В этот период оболочка достаточно эластична. После прекращения роста клетки изнутри на первичную клеточную стенку начинают откладываться новые слои и образуется вторичная клеточная стенка, придающая клетке жёсткость и прочность.

ВСЕ ВЕЩЕСТВА (КОМПОНЕНТЫ) , входящие в состав оболочки (клетки) клетки, можно разделить на 4 группы:

1) Структурные компоненты, представленные целлюлозой у большинства автотрофных растений, хитином (грибы) , глюканом (дрожжи) , манналом и ксиланом (водоросли) . 2) Компоненты матрикса, т. е. основного вещества, наполнителя оболочки – гемицеллюлозы, белки, липиды. 3) Компоненты, инкрустирующие клеточную стенку, (т. е. откладывающиеся и выстилающие её изнутри) – лигнин и суберин. 4) Компоненты, адкрустирующие стенку, т. е. откладывающиеся на её поверхности, – кутин, воск.

Основной структурный компонент оболочки – целлюлоза представлена длинными неразветвленными полимерными молекулами, состоящими из 1000-11000 остатков b -D глюкозы, соединённых между собой гликозидными связями. Наличие гликозидных связей создаёт возможность образования поперечных стивок.

Благодаря этому, длинные и тонкие молекулы целлюлозы объединяются в элементарные фибриллы или мицеллы. Каждая мицелла состоит из 60-100 параллельно расположенных цепей целлюлозы.

КЛЕТОЧНАЯ ОБОЛОЧКА:

Более подробно, с описанием структуры веществ смотри на http://www.agrojour.ru/nauka/botanika/kletochnaya-obolochka.html

otvet.mail.ru

ЛЕКЦИЯ 5 - Стр 2

Состав, концентрация и вязкость клеточного сока у разных видов растений различны и неодинаковы даже в тканях, органах и клетках одного растения. Далеко не все перечисленные вещества одновременно присутствуют в клеточном соке. Некоторые из них (алкалоиды, гликозиды) характерны только для определенных групп растений, тогда как другие распространены более широко. Нередко в специализированных клетках происходит накопление только какого-либо одного вещества. На состав и свойства клеточ­ного сока большое влияние оказывает возраст клетки и окружаю­щие условия.

Вещества клеточного сока могут быть разносторонне использо­ваны, и поэтому он является ценнейшим комплексным сырьем для промышленности. Особенно большое практическое значение имеет млечный сок как источник получения каучука, гуттаперчи, опиума, кодеина и других веществ. Большое количество каучука содержит­ся в млечном соке бразильской гевеи, а также травянистых каучу­коносов — кок-сагыза, крым-сагыза и тау-сагыза, произрастаю­щих в РФ.

  1. Оболочка растительной клетки. Одной из характерных особен­ностей растительной клетки является плотная оболочка, которую образует на поверхности клетки протопласт в процессе своей жиз­недеятельности. Наличие или отсутствие оболочки служит надеж­ным признаком, который позволяет отличить растительную клетку от животной. Оболочка защищает протопласт от внешних воздействий и придает клетке форму и прочность. Изнутри клеточная оболочка выстлана плазмалеммой. Некоторые клетки растений оболочки не имеют (половые клетки, клетки слизевиков).

Клеточные оболочки значительно изменяются в зависимости от возраста и типа клетки. Обычно молодые клетки имеют оболочку более тонкую, чем клетки, полностью сформировавшиеся. Клеточ­ной оболочке свойственна пластичность, т. е. способность прини­мать и сохранять в дальнейшем новую форму и размеры, а также эластичность, благодаря которой оболочка может восстанавливать прежнюю форму и размеры после деформации. Клеточная оболочка обладает значительной прочностью на растяжение. Строение обо-' лочки тесно связано с функцией клетки.

Химический состав и структура оболочки. В состав оболочки чаще всего входят - целлюлоза (клетчатка), гемицеллюлоза (полуклетчатка) и пектиновые вещества. Наибольшее значение и распространение имеет целлюлоза, нередко составляю­щая до 90% вещества оболочки. Она представляет собой углевод (полисахарид), близкородственный крахмалу, и имеет такую же эмпирическую формулу — (С6Н10О5) п ,— но с другим значением коэффициента п и с более сложным молекулярным строением. Молекулы целлюлозы имеют нитчатую структуру и, располагаясь параллельно, группируются в пучки — мицеллы. Мицеллы в свою очередь образуют более крупные структурные элементы — фиб­риллы, промежутки между которыми заполнены основным вещест­вом оболочки (матриксом), состоящим из пектиновых веществ и гемицеллюлозы. Целлюлоза осахаривается в крепких кислотах, а растворяется только в реактиве Швейцера (аммиачный раствор окиси меди). Гемицеллюлоза также является очень стойким веществом, но поддается разложению несколько легче, чем цел­люлоза.

Петкиновые вещества в отличие, от целлюлозы и гемицеллюлозы состоят не из нитчатых, а из сильно разветвленных молекул, вслед­ствие чего они обычно аморфны. Особенностью пектиновых веществ является их способность набухать в йоде. Кроме того, пектиновые вещества обладают значительно меньшей прочностью и сравнительно легко разрушаются. У некоторых низших растений оболочка кле­ток полностью состоит из пектиновых веществ.

За л ож е н u е и рост оболочки. В клетке разли­чают первичную и вторичную оболочки. Каждая вновь образовав­шаяся клетка сразу окружается очень тонкой прозрачной оболочкой. Эта оболочка является первичной, и в ней преобладают гемицеллюлоза и пектиновые вещества, а также содержится большое коли­чество воды. Формирование первичной оболочки заканчивается, когда клетка достигает своего окончательного размера и перестает расти. Некоторые клетки до конца жизни остаются покрытыми пер­вичной оболочкой. Однако в большинстве случаев после прекраще­ния роста клетки протопласт ее начинает формировать вторичную оболочку, вещество которой откладывается на внутреннюю поверх­ность первичной оболочки. В состав вторичной оболочки входит главным образом целлюлоза. В ней обычно хорошо заметны слои­стость и щтриховатость, обусловленные ее субмикроскопической структурой. Преобладание целлюлозы определяет высокие меха­нические качества вторичной оболочки, особенно ее прочность на растяжение и эластичность. Иногда в клетках различают третич­ную оболочку в виде тонкого внутреннего слоя, в состав которого входит особое вещество — ксилан.

Между первичными оболочками соседних клеток находится про­слойка межклеточного пектинового вещества, которая называется срединной пластинкой. Совокупность первичных обо­лочек двух соседних клеток и заключенной между ними тонкой про­слойки межклеточного вещества образует клеточную стенку. Не­которые авторы отождествляют клеточную оболочку с клеточной стенкой, что, по-видимому, не совсем правильно. Разрушение сре­динной пластинки приводит к разъединению клеток — мацера­ции. Обособленные, мацерированные, клетки обычно приобре­тают шаровидную форму, тогда как будучи соединены одна с другой и испытывая взаимное давление, они имеют форму многогранников. Рост клеточной оболочки может осуществляться двумя спосо­бами: наложением (обычно изнутри) новых слоев оболочки на ста­рые (аппозиция) и внедрением частиц вещества оболочки между старыми (интуссусцепция). При аппозиции происходит утолщение клеточной оболочки, при интуссусцепции — растяжение и увели­чение ее поверхности. Оболочки имеют различную толщину, что обусловлено функцией клетки. Так, у опорных клеток толщина оболочки может достигать 10 мкм. Нередко оболочка настолько утолщается, что занимает всю полость клетки, вследствие чего происходит отмирание протопласта. Иногда наблюдается местное утолщение оболочки — отдельными участками в виде колец, спи­ралей и т. и.

П о р ы и п л а з м о д е с м ы. При формировании первичной оболочки в ней возникают участки, на которых отложение вещества оболочки происходит менее интенсивно. В результате в первичной оболочке появляются многочисленные углубления, получившие название первичных поровых полей. Во вторичной оболочке также имеются участки, на которых вещество оболочки не откла­дывается, вследствие чего в ней возникают прорывы, достигающие первичной оболочки и называемые порами.

Поры двух смежных клеток, как правило, совпадают. Между ними имеется участок тонкой первичной оболочки, называемый замыкающей пленкой поры. Следовательно, полость поры с внутренней стороны непосредственно соединяется с полостью клетки, а с наружной, там, где она соприкасается с соседней клеткой, прикрыта замыкающей пленкой.

В клетках с мощно развитой вторичной оболочкой поры превра­щаются в поровые каналы, идущие от полости клетки до первичной оболочки. Обычно поры образуются непосредственно над первич­ными поровыми полями, но могут возникать и над другими участ­ками первичной оболочки.

Различают 2 типа пор — простые и окаймленные. Упростых пор диаметр порового канала приблизительно одинаков на всем протяжении. У окаймленных пор он резко суживается по мере отложения вторичной оболочки, вследствие чего внутреннее отверстие поры, ведущее в полость клетки, гораздо уже, чем наружное, граничащее с первичной оболочкой. При этом вторичная обо­лочка в виде валика нависает над расширенной частью канала.

Замыкающие пленки пор пронизаны мельчайшими отверстиями в виде канальцев, через которые из одной клетки в другую прохо­дят нити цитоплазмы — плазмодесмы. Ввиду того, что плазмодесмы являются очень тонкими и нежными, увидеть их в световой микроскоп удается не всегда. Однако применение элект­ронного микроскопа позволило обнаружить плазмодесмы почти у всех растений и во всех тканях. Количество плазмодесм в клетке очень велико и у некоторых растений (омела) достигает 6...24 тыс.

Плазмодесмы имеют большое биологическое значение. Они связаны с эндоплазматической сетью, а также соединяют протопласты от­дельных клеток, обеспечивая непрерывность эндоплазматической сети и всей цитоплазмы организма. С помощью плазмодесм осуществляются проведение различных веществ, передача раздражений из одной клетки в другую и регуляция всех жизненных процессов, протекающих в организме. Плазмодесмы были впервые описаны в 1877 г. русским ученым И. Н. Горожанкиным, а затем Э. Руссоным, Э. Танглем, Э. Страсбургером и другими исследователями.

В последнее время нити цитоплазмы были обнаружены также в оболочках клеток, граничащих с внешней средой. Они получили название эк т о д е с м. По-видимому, они играют роль в выделении наружу в поглощении клеткой из внешней среды воды и растворен­ных в ней веществ.

В и д о и з м с н с. н и я клеточной оболочк и. Многие клетки сохраняют целлюлозные оболочки до конца своей жизни. Однако часто в процессе жизнедеятельности протопласта клеточная оболочка подвергается различным изменениям и приобретает новые химические и физические свойства. К числу таких изменений от­носятся одревеснение, опробковение, кутинизация, минерализация и ослизнение.

Одревеснение клеточной оболочки происходит в резуль­тате накопления в ней особого вещества — лигнина, который откладывается в промежутках между фибриллами целлюлозы, не вступая с ней в химическое соединение. Лигнин отличается от углеводов более высоким содержанием углерода, его эмпирическая формула С57Нв0О10. Однако химическая природа лигнина оконча­тельно еще не выяснена. Ультраструктура одревесневших оболо­чек напоминает структуру железобетона, причем микрофибриллы можно сравнить с арматурой, а лигнин играет роль основного ве­щества. Одревесневшая оболочка теряет эластичность, становится более твердой, хрупкой и приобретает большую прочность на сжатие. Особенно сильное одревеснение клеточных оболочек наблюдается у кустарников и деревьев. При этом клетки могут сохранять живое содержимое, и в них не прекращается обмен веществ. Однако чаще такие клетки отмирают. Лигнин предохраняет клетки высших растений от разрушительного действия бактерий и грибов. В не­которых случаях происходит раздревеснение клеточных оболо­чек — они теряют лигнин и снова становятся мягкими. Подобное явление можно наблюдать, например, при созревании плодов груши или айвы, сопровождающемся раздревеснением оболочек каменистых клеток.

Опробковение заключается в пропитывании оболочки жироподобным веществом — суберином, который делает ее непроницаемой для воды и газов. Суберин не образует скелетные структуры, как это наблюдается при пропитывании оболочки лигни­ном. Он обычно накладывается изнутри па первичную оболочку в виде тонкого слоя. Вскоре после образования суберинового слоя клетка, будучи изолирована от внешней среды, отмирает и наполня­ется воздухом, как у пробкового дуба, или в ней накапливаются различные вещества.

Кутинизация — это пропитывание клеточных оболочек жироподобным веществом - к у т и и о м, который по своей хими­ческой природе близок к суберину. Как правило, кутин пропиты­вает только ту часть клеточной оболочки, которая непосредственно соприкасается с атмосферой. Часто кутин образует на поверхности клеток непрерывный застывший слой –кутикулу - в виде очень тонкой блестящей пленки. Кутинизация является защитным при­способлением против- слишком интенсивного испарения. Кроме того, кутикула отражает солнечные лучи, что предохраняет растение от перегрева, а иногда защищает листья от ультрафиолетового из­лучения, поглощая ультрафиолетовые лучи.

Ослизнение клеточных оболочек заключается в превра­щении клетчатки или пектиновых веществ в более высокомолеку­лярные углеводы — слизи и камеди, способные к сильному набуханию при соприкосновении с водой. Чаще всего ослизнению под­вергаются оболочки клеток семенной кожуры у семян льна, тыквы, арбуза и листьев некоторых засухоустойчивых растений. Ослизнение ускоряет прорастание семян, а также предохраняет растения от перегрева. Иногда ослизнение клеточных оболочек и содержимого клеток наблюдается при поранениях. При этом происходит каме­детечение (гуммоз), характерное для вишни, сливы и других растений.

Минерализация представляет собой отложение мине­ральных солей (кремнезема, углекислого кальция и др.) в клеточных оболочках стеблей и листьев многих растений — осок, злаков, хво­щей. Минерализация повышает прочность оболочки и придает ей особую твердость, защищая растение от поедания животными.

Оболочка растительных клеток имеет большое практическое значение и используется в качестве сырья для получения клет­чатки, древесины и других веществ, из которых вырабатываются бумага, искусственный шелк, кинопленка, целлофан и др.

studfiles.net

Из чего состоит стенка растительной клетки?

Характерным признаком, отличающим клетки растений от клеток животных, является наличие прочной оболочки. Клеточная оболочка является производным протопласта, так как образуется из секрета аппарата Гольджи при участии ферментов на плазмалемме.

Клеточная оболочка в значительной степени определяет форму клеток и текстуру тканей. Она выполняет опорную и защитную функции. Ей принадлежит важная роль в таких процессах жизнедеятельности как поглощение, передвижение веществ, транспирация и выделение секретов.

Каждая клетка, входящая в состав какой-либо ткани, имеет свою собственную оболочку. В растительной оболочке различают три части:

• Первичная оболочка - это первая собственная оболочка, образующаяся в развивающейся клетке, которая у многих типов клеток остается и единственной на протяжении всей жизни. В ней содержится целлюлоза, гемицеллюлоза и пектин. Первичные оболочки связаны с живыми протопластами.

• Вторичная оболочка возникает вслед за первичной и накладывается на нее изнутри, т. е. со стороны полости клетки. Она состоит, в основном, из целлюлозы или различных смесей целлюлозы и гемицеллюлозы, лигнина, суберина и других веществ. Клетки, имеющие вторичные оболочки, в зрелом состоянии часто лишены протопластов.

• Межклетное вещество (срединная пластинка) находится между первичными оболочками двух смежных клеток и состоит, главным образом, из пектиновых веществ.

В стенках первичной оболочки возникают участки в виде многочисленных углублений, называемых первичными поровыми полями.

Поры в теле многоклеточного высшего растения являются своеобразными приспособлениями, облегчающими обмен веществ между клетками, и представляют собой углубления в клеточной оболочке, над которыми не формируется вторичная оболочка.

По форме порового канала различают два типа пор: простые и окаймленные (рис. 12, Б-В) . У простых пор диаметр порового канала приблизительно одинаков на всем протяжении от полости клетки до первичной оболочки, а канал имеет форму цилиндра. У окаймленных пор поровый канал резко суживается в процессе отложения вторичной оболочки, поэтому внутреннее отверстие поры, входящее в полость клетки, гораздо уже, чем наружное, упирающееся в первичную оболочку.

Поры в двух смежных клетках, как правило, возникают друг против друга. В результате, эти общие поры имеют вид одного канала, разделенного тонкой перегородкой из срединной пластинки и первичной оболочки. Совокупность пор смежных оболочек соседних клеток носит название пары пор и функционирует как одно целое. Поры обычно содержат тончайшие отверстия. Эти отверстия заполнены тяжами цитоплазмы в виде нитей, которые непосредственно связывают протопласты клеток, граничащих друг с другом. Эти тяжи цитоплазмы называются плазмодесмами (рис. 12, А) .

Многие клетки сохраняют целлюлозные оболочки до конца своей жизни. Однако очень часто, в процессе развития клетки, ее оболочка приобретает новые химические и физические свойства в результате отложения новых слоев оболочки из другого вещества. В результате этого происходит одревеснение (лигнификация) , опробковение (суберинизация) , кутинизация или минерализация клеточной оболочки.

Одревеснение оболочки заключается в отложении лигнина. Он увеличивает жесткость оболочки и обычно откладывается в клетках, выполняющих опорную и механическую функции.

Опробковение заключается в отложении воскообразного вещества - суберина. Он откладывается, преимущественно, во вторичной оболочке в виде одной или нескольких пластинок, видимых в световой микроскоп.

Кутинизация оболочки состоит в отложении в ней кутина - вещества очень близкого к суберину. Кутин обычно откладывается в оболочке вместе с воском. Кутинизации обычно подвергается наружная стенка клеточной оболочки эпидермы, граничащая с атмосферой.

otvet.mail.ru

ОБОЛОЧКА КЛЕТКИ — Большая Медицинская Энциклопедия

ОБОЛОЧКА КЛЕТКИ (син.: плазматическая мембрана, плазмолемма) — липопротеидная мембрана, отделяющая цитоплазму клетки от окружающей среды.

У человека и животных О.к. является элементарной мембраной, состоящей из двойного липидного слоя, покрытого белковыми молекулами (см. Мембраны биологические). У большинства клеток оболочки имеют ширину ок. 6— 10 нм. Белковый компонент О. к. (составляет ок. 60% сухой массы) представлен высокомолекулярным фибриллярным белком (структурный белок). Липидный компонент, составляющий в среднем ок. 40% сухой массы, представлен гл. обр. фосфолипидами (лецитин, холестерин). Кроме того, в состав О. к. входит ряд ферментов (5'-нуклеотидаза, фосфомоноэстераза, кислая РНК-аза, щелочная фосфатаза и Mg-зависимая АТФ-аза), играющих важную роль в осуществлении активного транспорта ионов через О. к. На поверхности животных клеток располагаются различные специализированные структуры. Свободная поверхность О. к. покрыта микроворсинками, из к-рых могут образовываться кутикула (эпителий кишечника) и щелочная каемка (эпителий канальцев почки). Связи смежных поверхностей клетки осуществляются путем образования разного типа контактов: посредством формирования заходящих друг в друга складок (интер-дигитация), путем слияния наружных слоев О. к. (замыкающая зона, плотные контакты — zonula occludens) и промежуточных контактов (zonula adhaerens). В наиболее сложных случаях контакты смежных поверхностей осуществляются специализированными метаплазматическими структурами — десмосомами (см.). У беспозвоночных животных может происходить слияние наружных слоев О. к. При этом образуются истинные мостики (септированные десмосомы). В эпителиальных клетках на базальной поверхности возникают многочисленные складки, вдающиеся в цитоплазму (базальный лабиринт).

С клеточной оболочкой связана одна из основных функций клетки — проницаемость (см.), за счет к-рой осуществляется обмен веществ с окружающей средой и поддержание в клетке физиол, гомеостаза (см.). Транспорт веществ через О. к. при этом осуществляется путем пассивного переноса (диффузии) и переноса против градиента концентрации — активного транспорта, требующего затрат энергии (см. Транспорт ионов). Наряду с этим существуют и другие механизмы поглощения клеткой как плотных (см. Фагоцитоз), так и жидких (см. Пиноцитоз) веществ.

О. к. обладает особой системой рецепторов (см.), способных улавливать изменения окружающей среды и воздействия нек-рых физиологически активных молекул (гормонов, медиаторов и др.), вызывающих ответную реакцию клетки. Эффект ряда гормонов осуществляется путем изменения активности фермента, связанного с клеточными рецепторами, — аденилатциклазы. Аденилатциклаза катализирует синтез циклической аденозинмонофосфорной к-ты (цАМФ), служащей непосредственным передатчиком действия гормона на внутриклеточные процессы. Механизм действия на клетку нейромедиаторов аналогичен. С клеточной оболочкой связаны способность клеток к двигательной активности, образование псевдоподий и ундулирующих мембран (пластинчатых выростов цитоплазмы, производящих колебательные движения) и др. Процессы деструкции и синтеза О. к.— обычное явление при поглощении (эндоцитозе) и выделении (экзоцитозе) чужеродных веществ и при физиол, секреции и экскреции.

Оболочка растительной клетки обладает рядом специфических особенностей, отличающих ее от животной клетки. Цитоплазма растительной клетки окружена плазматической мембраной, аналогичной плазмолемме животной клетки. Однако снаружи расположена еще система оболочек — первичной, вторичной и третичной, формирующая плотную клеточную стенку. Межклеточное вещество, соединяя оболочки соседних клеток, придает тканям высокую устойчивость. В период роста растительная клетка окружена первичной оболочкой, не препятствующей увеличению ее размеров. Эта оболочка имеет небольшую толщину и содержит преимущественно полисахариды — целлюлозу, гемицеллюлозу и пектин. В клетках, прекративших рост, в результате отложения различных веществ (лигнина, суберина, кутинов, различных минеральных солей) возникает вторичная оболочка. Она имеет значительную толщину и может подвергаться одеревенению или опробковению. Ее внутренний слой, прилежащий к плазмолемме, иногда выделяют как третичную оболочку. Через клеточную стенку проходят плазмодесменные канальцы, с помощью к-рых осуществляется связь цитоплазмы соседних клеток, передача раздражений и движение пластических веществ между клетками.

См. также Клетка.

Библиография: Васильев Ю. М. и Маленков А. Г. Клеточная поверхность и реакции клетки, Л., 1968, библиогр.; JI енинджер А. Биохимия, пер. с англ., М., 1976; T р и н к а у с Дж. От клеток к органам, пер. с англ., М., 1972; Трошин А. С. Проблема клеточной проницаемости, М.— JI., 1956, библиогр.; Финеан Дж., Колмэн Р. и Ми-чел л P. Мембраны и их функции в клетке, пер. с англ., М., 1977; Q u inn P. J. Molecular biology of cell membranes, L., 1976; Robertson J. D. The ultrastructure of cell membranes and their derivatives, в кн.: The structure and function of subcellular components, ed. byE. M. Crook, p. 3, Cambridge, 1959.

И. А. Алов.

xn--90aw5c.xn--c1avg

Строение и функции оболочки клетки

Клетка любого организма представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетки осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка клеток. Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений [49], [50], [51] различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки.Рис. 49. Схемы строения клеток по данным светового микроскопаРис. 50. Схема строения животной клетки по данным электронного микроскопаРис. 51. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток; через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Наружный слой поверхности клеток животных [49], [50] в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

Плазматическая мембрана. Под гликокаликсом и клеточной стенкой растений расположена плазматическая мембрана (лат. «мембрана» – кожица, пленка), граничащая непосредственно с цитоплазмой [52]. Толщина плазматической мембраны около 10 нм, изучение ее строения и функций возможно только с помощью электронного микроскопа.Рис. 52. Строение плазматической мембраны (электронно-микроскопическая фотография - вверху)В состав плазматической мембраны входят белки и липиды. Они упорядоченно расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой [52]. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину, как это показано на рисунке 52.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций, от которых зависит жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен. веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществ – одна из главных функций плазматической мембраны.

Через плазматическую мембрану из клетки выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани (эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность [53].Рис. 53. Электронно-микроскопическая фотография мембран двух соседних клеток (Видны складки и выросты наружной мембраны, увеличивающие прочность соединения клеток. Увел. 30 000 раз.)Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Фагоцитоз. Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцитоза (греч. «фагео» – пожирать). В фагоцитозе непосредственное участие принимает плазматическая мембрана [54]. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной упаковке» погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.Рис. 54. Схема пиноцитоза. Фагоцитоз у амебыФагоцитоз широко распространен в мире животных. Путем фагоцитоза питаются амебы, инфузории и многие другие простейшие. У позвоночных животных и человека к активному фагоцитозу способны только немногие клетки, например лейкоциты. Эти клетки поглощают бактерии, а также разнообразные твердые частички, случайно попавшие в организм, защищая его таким образом от болезнетворных микроорганизмов и посторонних частиц. Клеточная стенка растений, бактерий и сине-зеленых водорослей препятствует фагоцитозу и потому этот путь поступления веществ в клетку у них практически отсутствует.

Пиноцитоз. Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.

Поглощение жидкости в виде мелких капель напоминает питье, и это явление было вызвано пиноцитозом (греч. «пино» – пью). Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости [54] погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме.

Пиноцитоз широко распространен в природе и осуществляется клетками животных, растений, грибов, бактерий и сине-зеленых водорослей.

Процессы фаго- и пиноцитоза, транспорт ионов и молекул происходит с затратой энергии, которая образуется в клетке.

1. Сравните строение оболочки растительных и животных клеток. 2. Как происходит поступление веществ а клетку? 3. Каковы основные функции гликокаликса, клеточкой стенки и плазматической мембраны?

blgy.ru