Лекарственные растения и травы

Меню сайта

Дайте определения тканям. Назовите основные типы животных тканей. Назовите типы тканей животных растений


Дайте определние тканям. Назовите основные типы животных тканей. В чем их отличие от растительной?

Как правило, у многоклеточных организмов клетки отличаются (дифференцируются) по строению и выполняемым функциям, образуя ткани. Тканью называют группу сходных по строению клеток, структурно и функционально связанных между собой. Ткани животных организмов, их строение, функции, процессы развития изучает наука гистология (от греч. Гистос - ткань) , а растительных - анатомия растений.

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом) , которое они продуцируют. От клеток нервной ткани (нейронов) , образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Ткани возникают у большинства многоклеточных животных и высших растений, у низших растений и грибов тканей нет. Но у животных и растений есть определенные различия в формировании и структуре тканей. У животных различные типы тканей дифференцируются во время развития зародыша из разных зародышевых листков (экто-, мезо-и энтодермы) . У высших растений все постоянные ткани берут начало от образующей ткани - меристемы. Главное отличие между тканями животных и растений состоит в том, что ткани у животных состоят не только из клеток, но и содержат межклеточное вещество и другие структуры, которые являются продуктами их жизнедеятельности.

otvet.mail.ru

Дайте определения тканям. Назовите основные типы животных тканей

Как правило, у многоклеточных организмов клетки отличаются (дифференцируются) по строению и выполняемым функциям, образуя ткани. Тканью называют группу сходных по строению клеток, структурно и функционально связанных между собой. Ткани животных организмов, их строение, функции, процессы развития изучает наука гистология (от греч. Гистос - ткань) , а растительных - анатомия растений.

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом) , которое они продуцируют. От клеток нервной ткани (нейронов) , образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Ткани возникают у большинства многоклеточных животных и высших растений, у низших растений и грибов тканей нет. Но у животных и растений есть определенные различия в формировании и структуре тканей. У животных различные типы тканей дифференцируются во время развития зародыша из разных зародышевых листков (экто-, мезо-и энтодермы) . У высших растений все постоянные ткани берут начало от образующей ткани - меристемы. Главное отличие между тканями животных и растений состоит в том, что ткани у животных состоят не только из клеток, но и содержат межклеточное вещество и другие структуры, которые являются продуктами их жизнедеятельности.

http://www.bigpi.biysk.ru/encicl/articles/03/1000322/1000322F.htm http://estnauki.ru/biology/2-biology/693-tkani-osobennosti-stroeniya-rastitelnuh-tkaney.html

otvet.mail.ru

Ткани животных и растений

Количество просмотров публикации Ткани животных и растений - 445

 

Для клеток многоклеточных организмов характерна специализация и объединœение, в результате которых они образуют структуры, получившие название тканей, из которых формируются органы. Впервые термин ʼʼтканьʼʼ был использован англичанином Н. Грю еще в 1671 ᴦ. С тех пор эти системы стали предметом изучения ученых — гистологов многих поколений. В наше время под тканью понимают систему объединœенных клеток и их производных, выполняющих сходные специализированные функции. К этому следует добавить, что ткани являются результатом развития живых форм в ходе филогенеза и онтогенеза.

Клетки объединяются в составе тканей с помощью разных механизмов — ʼʼприкрепительныхʼʼ и ʼʼкоммуникационныхʼʼ. ʼʼПрикрепительныйʼʼ механизм состоит по сути в том, что клетки с помощью рецепторов адгезии (адгезинов) могут присоединяться к так называемому внеклеточному матриксу, представляющему собой сеть органических молекул (фибриллярных белков) и лигандов, погруженных в полисахаридный гель. Основным белком во внеклеточном матриксе является коллаген, полимерные формы которого сосредоточены в коже, сухожилиях, хрящах, кровеносных сосудах, внутренних органах и т. д. Важнейшей особенностью молекул коллагена является то, что им присуща трехцепочечная спиральная структура. Οʜᴎ могут связываться между собой межклеточными соединœениями в виде адгезионного соединœения или разных клеточных контактов (десмосом) или контактов между межклеточным матриксом и клетками (полудесмосом).

Помимо ʼʼприкрепительныхʼʼ соединœений для клеток в тканях характерны ʼʼкоммуникационныеʼʼ соединœения, наиболее распространенные из которых получили название щелœевых контактов. Различают несколько видов таких контактов. Οʜᴎ бывают представлены щелями между плазматическими мембранами сосœедних клеток, заполненными рыхлой сетью органических молекул (внеклеточным матриксом), что обеспечивает щелœевой контакт клеток. Далее, щелœевые контакты могут иметь вид выпячиваний (выроста) плазматической мембраны одной клетки в плазматическую мембрану другой клетки и слипанием этих выпячиваний. Щелœевые контакты позволяют малым молекулам переходить из одних клеток в другие. В случае нервных клеток имеют место синапсы, позволяющие передачу электрических и химических сигналов от одной клетки к другой. Важно подчеркнуть, что любой из названных межклеточных контактов основан на межмембранных связях.

Механизм объединœения клеток растений является другим. Поскольку у них нет плазматической мембраны, но есть клеточная стенка, которая содержит каналы, то соединœение сосœедних клеток обеспечивается соединœением их цитоплазматическими мостиками (плазмодесмами), представляющими собой цитоплазму, проникающую через каналы.

Организация тканей связана с наличием у клеток обмена информацией, который достигается выделœением клетками химических веществ, выполняющих функцию сигналов для других клеток, наличием на поверхностной мембране клеток сигнальных молекул, влияющих на другие клетки при их контакте, и щелœевых контактов, позволяющих обмен малыми молекулами.

Химическая сигнализация осуществляется с помощью сигнальных молекул, в частности, гормонов, выделяемых эндокринными клетками и воздействующих через кровь на клетки-мишени, а также с помощью локальных химических медиаторов, действующих только на ближайшие (сосœедние) клетки. В случае нервной системы клетки секретируют нейромедиаторы. Примерами белковых гормонов являются инсулин, соматотропин, адренокортикотропный гормон, тогда как стероидными гормонами являются эстрадиол, тестостерон, кортизол и другие. Сигнальными молекулами являются также некоторые олигопептиды (соматостатин, вазопрессин и др.), адреналин и нейромедиаторы (глицин, ацетилхолин и др.). Примером локальных сигнальных молекул является гистамин, выделяемый клетками соединительной ткани (тучными клетками). Сигнальные молекулы еще называют лигандами. Οʜᴎ связываются со специфическими белковыми рецепторами на поверхности клеток-мишеней, благодаря чему акт связывания генерирует сигнал, влияющий на поведение клеток, в частности на их кооперацию, ведущую к образованию тканей. Сигнальными молекулами, синтезируемыми на мембранной поверхности клеток, являются простагландины. Οʜᴎ очень быстро синтезируются и очень быстро разрушаются.

Образование тканей (гистогенез) у животных происходит из эктодермы, энтодермы, мезодермы и мезенхимы в период эмбриогенеза, а основными элементами тканей, как отмечено выше, являются клетки и их производные в виде неклеточных структур. Размещено на реф.рфΤᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ткань можно определить в виде сообщества клеток и их производных со специализированными функциями.

В рамках классификации тканей, основанной на морфофунк-циональном принципе, у животных и человека различают 5 типов тканей, а именно: эпителиальную, соединительную, мышечную и нервную ткани, а также кровь и лимфу.

Эпителиальная тканъ, или эпителий, состоит из клеток, покрывающих поверхность тела, внутренние поверхности внутренних органов (желудок, мочевой пузырь и др.), поверхности серозных оболочек (брюшина, плевра, перикард), а также из клеток, образующих некоторые желœезы (слюнные желœезы, поджелудочная желœеза и др.). По этой причине различают покровный и желœезистый (секреторный) эпителий. Из эктодермы развивается эпителий кожи, из энтодермы — эпителий желудка, кишечника, легких и др., а из мезодермы — эпителий почек, серозных оболочек и других структур.

Среди покровных эпителиальных тканей различают плоский, кубический, призматический и ресничный эпителий (рис. 60).

Плоский эпителий представлен уплощенными клетками, которые образуют поверхностный слой кожи и выстилают ротовую полость, пищевод и влагалище. Как правило, плоский эпителий является многослойным, образует слизистые оболочки пищевода, влагалища, эпидермис кожи и др.

Кубический эпителий представлен кубовидными клетками, которые выстилают почечные канальцы, наружную поверхность яичника и другие органы.

Призматический эпителий представлен клетками цилиндрической формы, им выстлан желудок, кишечник, матка и другие органы.

Ресничный эпителий представлен клетками, на поверхности которых имеются реснички. Биение этих ресничек обусловливает перемещение слизи и других веществ по эпителиальному слою.

Желœезистый эпителий представлен клетками призматической или кубической формы, которые продуцируют секрет. Οʜᴎ функционируют либо как одноклеточные желœезы, секретируя разные секреты, либо формируют многоклеточные желœезы, получившие название эндокринных желœез, т. к. они выделяют продукты своей деятельности (гормоны) в кровь и лимфу.

Соединительные ткани представлены собственно соединительной, костной и хрящевой тканями, развивающимися из мезенхимы. Οʜᴎ состоят из клеток и межклеточного вещества. Исходя из структуры и свойств межклеточного вещества, различают несколько типов этой ткани.

Волокнистая соединительная ткань представляет собой волокна (коллаген) и межклеточное вещество (протеогликаны и гликопротеиды), окружающие соединительнотканные клетки (фибробласты, макрофаги, тучные клетки) и являющиеся продуктом этих клеток. Эта ткань образует строму многих внутренних органов, основу слизистых оболочек, соединяет кожу с мышцами, участвует в формировании надкостницы.

Костная ткань формирует скелœет организма. Она состоит из костных клеток (остеоцитов, остеобластов и остеокластов) и выделяемого ими основного вещества кости, содержащего белки, из которых преобладающим является коллаген, и соли кальция (рис. 61).

Хрящи также формируют скелœет (в эмбриональном состоянии). У взрослых хрящевой скелœет имеется лишь у акул и скатов. Хрящевая ткань состоит из клеток (хондриоцитов, прехондроблас-тов и хондробластов) и межклеточного вещества (в основном коллагена).

Соединительные ткани выполняют опорную, трофическую, защитную и другие функции.

Кровь и лимфа являются тканями, которые начинают развиваться уже в эмбриональном периоде жизни организмов из мезенхимы, а затем из так называемых полипотентных стволовых клеток крови (СКК). У человека развитие первых клеток крови идет синхронно с сосудами, развивающимися вначале в стенке желчного мешка, а затем в печени, красном костном мозге, тимусе, селœезенке, лимфатических узлах эмбриона. Образование крови и лимфы происходит и на протяжении всœего постэмбрионального периода. Важнейшими функциями крови являются трофическая, дыхательная и транспортная.

Кровь является очень сложным образованием, составляющим у человека примерно 5-9% массы тела. В ее составе различают плазму и форменные элементы — эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

Плазма крови состоит на 90—93% из воды, в которой содержатся белки, углеводы, жиры и минœеральные вещества.

Эритроциты, или красные кровяные тельца (шарики), представляют из себябезъядерные овальные клетки, диаметр которых составляет 7,1-7,9 мкм (рис. 62). 1 мл крови мужчины содержит 3,9— 5,5 х 109 эритроцитов, а 1 мл крови женщины — 3,7—4,9 х 109. Основной функцией эритроцитов является транспортировка кислорода и углекислоты.

Лейкоциты (белые кровяные клетки) подразделяют на гранулоциты и агранулоциты. В составе гранулоцитов на базе отношения их к красителям различают нейтрофилы, эозинофилы и базофилы. В составе агранулоцитов различают лимфоциты и моноциты. Лимфоцитов в крови довольно много (20—35%). Οʜᴎ очень полиморфны. Их размеры составляют 4,5—10 мкм. Поскольку для них характерно разное происхождение, то различают Т-лимфоци-ты, образование которых происходит в тимусе, и В-лимфоциты, образующиеся в красном костном мозге. Эти лимфоциты различаются и по функциям (см. § 96).

Моноциты являются клетками размером 18-22 мкм. Их доля среди лейкоцитов составляет 6—7%. Эти клетки постоянно мигрируют в соединительную ткань, где они дают начало макрофагам.

Лейкоциты выполняют защитную функцию (участвуют в формировании иммунитета).

Тромбоциты (красные кровяные пластинки) — это безъядерные тельца размером 2—3 мкм, содержание которых в 1 мл крови человека равно 3 х Ю8. Являясь составной частью тромбоксилазы, они принимают участие в свертывании крови.

Лимфа, подобно крови, также состоит из жидкой части и форменных элементов. Жидкой частью является лимфоплазма, а форменные элементы представлены в основном лимфоцитами. В лимфе встречаются также моноциты, но в небольшом количестве. Основная функция лимфы состоит в регулировании циркуляции лимфоцитов, а также оттока различных жидкостей и находящихся в ней метаболитов от органов.

Мышечная ткань образована мышечными клетками (миоцита-ми), являющимися структурно-функциональными единицами многоядерных мышечных волокон — миофибрилл. Эти волокна образуются в результате слияния миоцитов. Установлено, что слияние обеспечивается несколькими белками (кадгеринами, интегринами, меятринами). Различают гладкую и поперечно-полосатую мышечную ткань (рис. 63), которые различаются между собой по строению миофибрилл. Гладкие мышцы построены из вытянутых сигароподобных клеток (миоцитов). Οʜᴎ формируют мышечные слои стенок сосудов, бронхов, желудка, кишечника и т. д. Поперечно-полосатая мышечная ткань представлена скелœетной мышечной тканью. Скелœетные мышцы прикрепляются к костям. Сердечная мышечная ткань представлена сократительными кардиомиоцитами. Сократительная способность мышц обеспечивается по той причинœе, что сократительные структуры (миофибриллы) содержат миозин и актин.

Нервная ткань формируется из эктодермы и представлена нейронами (нейроцитами), которые являются клетками, проводящими электрические импульсы, и клетками нейроглии (рис. 64).

Нейрон состоит из тела, в котором содержится ядро, и отходящих от тела двух или более отростков. Те отростки, которые проводят нервные импульсы от тела нейрона к периферии, получили название аксонов, а те, которые проводят импульсы к телу нейрона, названы дендритами. Нейроглия представлена клетками, выстилающими полости головного и спинного мозга и образующими оболочки нейронов и их отростков, а также клетками, встречающимися на поверхности тела нейронов и нервных ганглиев, в нервных окончаниях. Нервными волокнами являются отростки нервных клеток и глиальные оболочки.

Нервная ткань составляет основной компонент нервной системы, главные функции которой заключаются в регуляции функционирования тканей и органов, а также координации связи организмов с окружающей средой.

Клетки почти всœех высших растений также специализированы и организованы в ткани. У растений различают меристематичес-кую (образовательную), покровную (защитную), основную и проводящую ткани.

Меристематические ткани представлены мелкими клетками с крупными ядрами, в которых очень высок уровень метаболизма (рис. 65). Эти клетки способны к делœению, что обеспечивает рост растений в течение длительного периода. Вместе с тем, они дают начало тканям остальных типов, т. к. происходит их дифференциация в ткани других типов. Меристема имеется в зародыше, на кончиках корней, а также в тех частях растения, которые очень быстро растут, и в камбии. Меристемы осœевых органов растений обеспечивают их рост в длину, тогда как меристемы стебля и корня ответственны за их рост в толщину. В частности делœение клеток камбия сопровождается ростом стебля в толщину. Слои клеток древесины, выросшие в течение сезона (весна, лето и осœень), образуют так называемое годичное кольцо прироста.

Покровные ткани представлены плотно сомкнутыми клетками, располагающимися на внешней поверхности растений (рис. 66). К этим тканям относят эпидерму листьев, а также пробковые слои стебля и корней. Οʜᴎ выполняют защитную функцию, предохраняя от высыхания или механических повреждений лежащие глубже тонкостенные клетки.

Основные ткани представлены различными по форме клетками, образующими основную массу тела растений (мягкие части листьев, цветков, плодов, сердцевину стеблей и корней, а также кору). Главная функция этих тканей состоит в синтезе и накоплении питательных веществ. В частности, часть этих тканей представлена хлоропластосодержащими клетками, в которых происходит фотосинтез.

Проводящие ткани (рис. 67) представлены ксилемой (древесина) и флоэмой (луб). Клетки ксилемы дают начало длинным клеткам, называемым трахеидами. Соединяясь между собой концами, трахеиды образуют сосуды древесины. После растворения в них поперечных стенок они превращаются в длинные целлюлозные трубки, по которым и проходит вода. Ксилема проводит воду и растворенные в ней соли от корня к листьям, что представляет собой восходящий (транспирационный) ток.

Флоэма образуется аналогично тому, как и ксилема, но с той лишь разницей, что поперечные стенки не устраняются, а сохраняются. При этом в них образуются отверстия, обеспечивающие ʼʼпроходʼʼ органических веществ от листьев к корням. Следовательно, флоэма обеспечивает нисходящий ток, т. е. движение органических веществ от листьев к корням.

referatwork.ru

Ткани растений и животных - Документ

Ткани растений и животных

Ты уже знаете, что все живые организмы по своему строению делятся на две большие группы: одноклеточ­ные и многоклеточные. Тела одноклеточных организмов состоят из одной-единственной клетки, в которой проте­кают все процессы жизнедеятельности.

Иначе обстоит дело у многоклеточных организмов. Их тела состоят из множества различных клеток. Так, в орга­низме человека более 100 триллионов клеток. Каждая клетка многоклеточного организма имеет свою «специ­альность», т. е. выполняет строго определенную функ­цию — работу. Одни служат опорой тела, другие обеспе­чивают передвижение веществ, пищеварение, размножение организма и многие другие функции.

Группа клеток, сходных по размерам, строению и вы­полняемым функциям, образует ткань. Клетки одной тка­ни соединены между собой межклеточным веществом.

Давайте заглянем внутрь растения и посмотрим, как устроены его ткани. Вот перед нами кончики корня и по­бега. Они образованы мелкими, постоянно делящимися клетками с крупными ядрами, в их цитоплазме совсем нет вакуолей. Это образовательная ткань, деление ее кле­ток обеспечивает рост растения. Из нее, например, цели­ком состоит зародыш растения.

Защищают растения от неблагоприятных воздействий, от повреждений покровные ткани. Они образованы как живыми, так и мертвыми клетками. Толстые и прочные оболочки таких мертвых клеток не пропускают ни воду, ни воздух. Они очень прочно соединены друг с другом. Покровная ткань образует, например, кожицу листа, проб­ковые слои стволов деревьев.

Выполняет покровная ткань и другие функции. Она, например, связывает растение с внешней средой: через специальные образования — устьица и чечевички — рас­тение дышит, испаряет воду.

Опору растению, его органам придает механическая ткань. Клетки ее имеют утолщенные, одревесневшие обо­лочки, а живое содержимое в них часто отсутствует. Пред­ставление о прочности механической ткани вы можете получить, разбивая скорлупу грецкого ореха, косточку аб­рикоса — в них содержатся особые каменистые клетки. А в стебле опорную роль играют вытянутые клетки — волокна.

Вода, растворенные в ней минеральные и органиче­ские вещества передвигаются по проводящим тканям. Клетки проводящей ткани могут быть как живыми, так и мертвыми. По внешнему виду они очень напоминают со­суды или трубочки, которые тянутся через корень и сте­бель в лист.

Мякоть листа и плодов, мягкие части цветка, главную массу коры и сердцевины стеблей, корня образует основ­ная ткань. Ее функции очень разнообразны, но главная — образование и накопление питательных веществ. В клетках мякоти листа содержатся хлоропласты — органоиды, ко­торые участвуют в образовании питательных веществ в процессе фотосинтеза.

Теперь рассмотрим особенности строения тканей жи­вотных организмов. Различают четыре типа тканей — эпителиальная, соединительная, мышечная и нервная.

Наружную поверхность тела животных, а также поло­сти внутренних органов, например ротовую полость, по­лость желудка, кишечника, выстилает эпителиальная ткань. Клетки ее очень плотно прилегают друг к другу, а меж­клеточное вещество почти отсутствует. Такое строение обеспечивает защиту нижележащих тканей от высыхания, проникновения микробов, механических повреждений. Эпителиальная ткань участвует и в образовании желез — слюнных, потовых, поджелудочной, печени и других, кото­рые выделяют важные для организма вещества.

Опорную и защитную функцию в организме живо­тных выполняет соединительная ткань. Она же в значи­тельной степени определяет и форму их тела, может слу­жить энергетическим депо и предохранять организм от потери тепла. К этому типу относятся костная ткань, хрящ, жировая ткань, кровь и другие. Несмотря на боль­шое многообразие, все виды соединительной ткани объе­диняет одна особенность — наличие большого количест­ва межклеточного вещества. Оно может быть плотным, как в костной ткани, рыхлым, как в тканях, заполняющих пространство между органами, и жидким, как в крови.

Важная особенность животных — их способность к пе­редвижению. Движение большинства животных — ре­зультат сокращений мышц. Мышцы состоят из мышечной ткани. Различают гладкую и поперечнополосатую мышеч­ные ткани. Их основное свойство — возбудимость и со­кратимость.

Клетки гладкой мышечной ткани одноядерные; они сокращаются очень медленно, но могут долго оставаться в сокращенном состоянии. Именно гладкие мышцы обес­печивают продолжительное смыкание створок раковин моллюсков, сужение и расширение кровеносных сосудов у человека.

Поперечнополосатая мышца состоит из многоядерных клеток, имеющих поперечнополосатую исчерченность, — отсюда и название ткани. Именно с их сокращениями связаны быстрые движения многочисленных членисто­ногих (насекомые, раки, пауки) и позвоночных. Вспомни­те стремительный полет стрекозы, ласточки, бег антилопы, гепарда!

Поперечнополосатая мышца может мгновенно сокра­щаться — в тысячу раз быстрее, чем гладкая.

Нервная ткань образует нервную систему животного. Ее основу составляет нервная клетка. Она состоит из тела и многочисленных отростков различной длины. Один из них обычно особенно длинный, он может достигать в длину от нескольких сантиметров до нескольких метров, как, например, у жирафа. Основное свойство нервной клетки — это возбудимость и проводимость.

Зародыш растения целиком состоит из образователь­ной ткани. По мере его развития большая ее часть преоб­разуется в другие виды тканей, но даже в самом старом дереве остается образовательная ткань: она сохраняется на верхушках всех побегов, во всех почках, на кончиках корней, в камбии — клетках стебля, обеспечивающих его рост в толщину.

Покровная ткань листа — кожица — выделяет воскообразное вещество, которое препятствует испарению во­ды с поверхности листа.

У зародышей всех позвоночных скелет состоит из хря­ща, который по мере развития заменяется костной тканью. Исключение составляют акулы и скаты; у них скелет остается хрящевым до конца жизни.

В мышечных тканях находится большое количество параллельно расположенных сократительных волокон. Именно их сокращение, при котором они становятся ко­роче и толще, позволяет мышце производить механиче­скую работу.

refdb.ru

Ткани животных и растений

 

Для клеток многоклеточных организмов характерна специализация и объединение, в результате которых они образуют структуры, получившие название тканей, из которых формируются органы. Впервые термин «ткань» был использован англичанином Н. Грю еще в 1671 г. С тех пор эти системы стали предметом изучения ученых — гистологов многих поколений. В наше время под тканью понимают систему объединенных клеток и их производных, выполняющих сходные специализированные функции. К этому следует добавить, что ткани являются результатом развития живых форм в ходе филогенеза и онтогенеза.

Клетки объединяются в составе тканей с помощью разных механизмов — «прикрепительных» и «коммуникационных». «Прикрепительный» механизм заключается в том, что клетки с помощью рецепторов адгезии (адгезинов) могут присоединяться к так называемому внеклеточному матриксу, представляющему собой сеть органических молекул (фибриллярных белков) и лигандов, погруженных в полисахаридный гель. Основным белком во внеклеточном матриксе является коллаген, полимерные формы которого сосредоточены в коже, сухожилиях, хрящах, кровеносных сосудах, внутренних органах и т. д. Важнейшей особенностью молекул коллагена является то, что им присуща трехцепочечная спиральная структура. Они могут связываться между собой межклеточными соединениями в виде адгезионного соединения или разных клеточных контактов (десмосом) или контактов между межклеточным матриксом и клетками (полудесмосом).

Помимо «прикрепительных» соединений для клеток в тканях характерны «коммуникационные» соединения, наиболее распространенные из которых получили название щелевых контактов. Различают несколько видов таких контактов. Они могут быть представлены щелями между плазматическими мембранами соседних клеток, заполненными рыхлой сетью органических молекул (внеклеточным матриксом), что обеспечивает щелевой контакт клеток. Далее, щелевые контакты могут иметь вид выпячиваний (выроста) плазматической мембраны одной клетки в плазматическую мембрану другой клетки и слипанием этих выпячиваний. Щелевые контакты позволяют малым молекулам переходить из одних клеток в другие. В случае нервных клеток имеют место синапсы, позволяющие передачу электрических и химических сигналов от одной клетки к другой. Важно подчеркнуть, что любой из названных межклеточных контактов основан на межмембранных связях.

Механизм объединения клеток растений является другим. Поскольку у них нет плазматической мембраны, но есть клеточная стенка, которая содержит каналы, то соединение соседних клеток обеспечивается соединением их цитоплазматическими мостиками (плазмодесмами), представляющими собой цитоплазму, проникающую через каналы.

Организация тканей связана с наличием у клеток обмена информацией, который достигается выделением клетками химических веществ, выполняющих функцию сигналов для других клеток, наличием на поверхностной мембране клеток сигнальных молекул, влияющих на другие клетки при их контакте, и щелевых контактов, позволяющих обмен малыми молекулами.

Химическая сигнализация осуществляется с помощью сигнальных молекул, в частности, гормонов, выделяемых эндокринными клетками и воздействующих через кровь на клетки-мишени, а также с помощью локальных химических медиаторов, действующих только на ближайшие (соседние) клетки. В случае нервной системы клетки секретируют нейромедиаторы. Примерами белковых гормонов являются инсулин, соматотропин, адренокортикотропный гормон, тогда как стероидными гормонами являются эстрадиол, тестостерон, кортизол и другие. Сигнальными молекулами являются также некоторые олигопептиды (соматостатин, вазопрессин и др.), адреналин и нейромедиаторы (глицин, ацетилхолин и др.). Примером локальных сигнальных молекул является гистамин, выделяемый клетками соединительной ткани (тучными клетками). Сигнальные молекулы еще называют лигандами. Они связываются со специфическими белковыми рецепторами на поверхности клеток-мишеней, в результате чего акт связывания генерирует сигнал, влияющий на поведение клеток, в частности на их кооперацию, ведущую к образованию тканей. Сигнальными молекулами, синтезируемыми на мембранной поверхности клеток, являются простагландины. Они очень быстро синтезируются и очень быстро разрушаются.

Образование тканей (гистогенез) у животных происходит из эктодермы, энтодермы, мезодермы и мезенхимы в период эмбриогенеза, а основными элементами тканей, как отмечено выше, являются клетки и их производные в виде неклеточных структур. Таким образом, ткань можно определить в виде сообщества клеток и их производных со специализированными функциями.

В рамках классификации тканей, основанной на морфофунк-циональном принципе, у животных и человека различают 5 типов тканей, а именно: эпителиальную, соединительную, мышечную и нервную ткани, а также кровь и лимфу.

Эпителиальная тканъ, или эпителий, состоит из клеток, покрывающих поверхность тела, внутренние поверхности внутренних органов (желудок, мочевой пузырь и др.), поверхности серозных оболочек (брюшина, плевра, перикард), а также из клеток, образующих некоторые железы (слюнные железы, поджелудочная железа и др.). Поэтому различают покровный и железистый (секреторный) эпителий. Из эктодермы развивается эпителий кожи, из энтодермы — эпителий желудка, кишечника, легких и др., а из мезодермы — эпителий почек, серозных оболочек и других структур.

Среди покровных эпителиальных тканей различают плоский, кубический, призматический и ресничный эпителий (рис. 60).

Плоский эпителий представлен уплощенными клетками, которые образуют поверхностный слой кожи и выстилают ротовую полость, пищевод и влагалище. Как правило, плоский эпителий является многослойным, образует слизистые оболочки пищевода, влагалища, эпидермис кожи и др.

Кубический эпителий представлен кубовидными клетками, которые выстилают почечные канальцы, наружную поверхность яичника и другие органы.

Призматический эпителий представлен клетками цилиндрической формы, им выстлан желудок, кишечник, матка и другие органы.

Ресничный эпителий представлен клетками, на поверхности которых имеются реснички. Биение этих ресничек обусловливает перемещение слизи и других веществ по эпителиальному слою.

Железистый эпителий представлен клетками призматической или кубической формы, которые продуцируют секрет. Они функционируют либо как одноклеточные железы, секретируя разные секреты, либо формируют многоклеточные железы, получившие название эндокринных желез, т. к. они выделяют продукты своей деятельности (гормоны) в кровь и лимфу.

Соединительные ткани представлены собственно соединительной, костной и хрящевой тканями, развивающимися из мезенхимы. Они состоят из клеток и межклеточного вещества. Исходя из структуры и свойств межклеточного вещества, различают несколько типов этой ткани.

Волокнистая соединительная ткань представляет собой волокна (коллаген) и межклеточное вещество (протеогликаны и гликопротеиды), окружающие соединительнотканные клетки (фибробласты, макрофаги, тучные клетки) и являющиеся продуктом этих клеток. Эта ткань образует строму многих внутренних органов, основу слизистых оболочек, соединяет кожу с мышцами, участвует в формировании надкостницы.

Костная ткань формирует скелет организма. Она состоит из костных клеток (остеоцитов, остеобластов и остеокластов) и выделяемого ими основного вещества кости, содержащего белки, из которых преобладающим является коллаген, и соли кальция (рис. 61).

Хрящи также формируют скелет (в эмбриональном состоянии). У взрослых хрящевой скелет имеется лишь у акул и скатов. Хрящевая ткань состоит из клеток (хондриоцитов, прехондроблас-тов и хондробластов) и межклеточного вещества (в основном коллагена).

Соединительные ткани выполняют опорную, трофическую, защитную и другие функции.

Кровь и лимфа являются тканями, которые начинают развиваться уже в эмбриональном периоде жизни организмов из мезенхимы, а затем из так называемых полипотентных стволовых клеток крови (СКК). У человека развитие первых клеток крови идет синхронно с сосудами, развивающимися вначале в стенке желчного мешка, а затем в печени, красном костном мозге, тимусе, селезенке, лимфатических узлах эмбриона. Образование крови и лимфы происходит и на протяжении всего постэмбрионального периода. Важнейшими функциями крови являются трофическая, дыхательная и транспортная.

Кровь является очень сложным образованием, составляющим у человека примерно 5-9% массы тела. В ее составе различают плазму и форменные элементы — эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

Плазма крови состоит на 90—93% из воды, в которой содержатся белки, углеводы, жиры и минеральные вещества.

Эритроциты, или красные кровяные тельца (шарики), представляют собой безъядерные овальные клетки, диаметр которых составляет 7,1-7,9 мкм (рис. 62). 1 мл крови мужчины содержит 3,9— 5,5 х 109 эритроцитов, а 1 мл крови женщины — 3,7—4,9 х 109. Основной функцией эритроцитов является транспортировка кислорода и углекислоты.

Лейкоциты (белые кровяные клетки) подразделяют на гранулоциты и агранулоциты. В составе гранулоцитов на основе отношения их к красителям различают нейтрофилы, эозинофилы и базофилы. В составе агранулоцитов различают лимфоциты и моноциты. Лимфоцитов в крови довольно много (20—35%). Они очень полиморфны. Их размеры составляют 4,5—10 мкм. Поскольку для них характерно разное происхождение, то различают Т-лимфоци-ты, образование которых происходит в тимусе, и В-лимфоциты, образующиеся в красном костном мозге. Эти лимфоциты различаются и по функциям (см. § 96).

Моноциты являются клетками размером 18-22 мкм. Их доля среди лейкоцитов составляет 6—7%. Эти клетки постоянно мигрируют в соединительную ткань, где они дают начало макрофагам.

Лейкоциты выполняют защитную функцию (участвуют в формировании иммунитета).

Тромбоциты (красные кровяные пластинки) — это безъядерные тельца размером 2—3 мкм, содержание которых в 1 мл крови человека равно 3 х Ю8. Являясь составной частью тромбоксилазы, они принимают участие в свертывании крови.

Лимфа, подобно крови, также состоит из жидкой части и форменных элементов. Жидкой частью является лимфоплазма, а форменные элементы представлены в основном лимфоцитами. В лимфе встречаются также моноциты, но в небольшом количестве. Основная функция лимфы заключается в регулировании циркуляции лимфоцитов, а также оттока различных жидкостей и находящихся в ней метаболитов от органов.

Мышечная ткань образована мышечными клетками (миоцита-ми), являющимися структурно-функциональными единицами многоядерных мышечных волокон — миофибрилл. Эти волокна образуются в результате слияния миоцитов. Установлено, что слияние обеспечивается несколькими белками (кадгеринами, интегринами, меятринами). Различают гладкую и поперечно-полосатую мышечную ткань (рис. 63), которые различаются между собой по строению миофибрилл. Гладкие мышцы построены из вытянутых сигароподобных клеток (миоцитов). Они формируют мышечные слои стенок сосудов, бронхов, желудка, кишечника и т. д. Поперечно-полосатая мышечная ткань представлена скелетной мышечной тканью. Скелетные мышцы прикрепляются к костям. Сердечная мышечная ткань представлена сократительными кардиомиоцитами. Сократительная способность мышц обеспечивается по той причине, что сократительные структуры (миофибриллы) содержат миозин и актин.

 

 

Нервная ткань формируется из эктодермы и представлена нейронами (нейроцитами), которые являются клетками, проводящими электрические импульсы, и клетками нейроглии (рис. 64).

Нейрон состоит из тела, в котором содержится ядро, и отходящих от тела двух или более отростков. Те отростки, которые проводят нервные импульсы от тела нейрона к периферии, получили название аксонов, а те, которые проводят импульсы к телу нейрона, названы дендритами. Нейроглия представлена клетками, выстилающими полости головного и спинного мозга и образующими оболочки нейронов и их отростков, а также клетками, встречающимися на поверхности тела нейронов и нервных ганглиев, в нервных окончаниях. Нервными волокнами являются отростки нервных клеток и глиальные оболочки.

 

 

Нервная ткань составляет основной компонент нервной системы, главные функции которой заключаются в регуляции функционирования тканей и органов, а также координации связи организмов с окружающей средой.

Клетки почти всех высших растений также специализированы и организованы в ткани. У растений различают меристематичес-кую (образовательную), покровную (защитную), основную и проводящую ткани.

Меристематические ткани представлены мелкими клетками с крупными ядрами, в которых очень высок уровень метаболизма (рис. 65). Эти клетки способны к делению, что обеспечивает рост растений в течение длительного периода. Кроме того, они дают начало тканям остальных типов, т. к. происходит их дифференциация в ткани других типов. Меристема имеется в зародыше, на кончиках корней, а также в тех частях растения, которые очень быстро растут, и в камбии. Меристемы осевых органов растений обеспечивают их рост в длину, тогда как меристемы стебля и корня ответственны за их рост в толщину. В частности деление клеток камбия сопровождается ростом стебля в толщину. Слои клеток древесины, выросшие в течение сезона (весна, лето и осень), образуют так называемое годичное кольцо прироста.

Покровные ткани представлены плотно сомкнутыми клетками, располагающимися на внешней поверхности растений (рис. 66). К этим тканям относят эпидерму листьев, а также пробковые слои стебля и корней. Они выполняют защитную функцию, предохраняя от высыхания или механических повреждений лежащие глубже тонкостенные клетки.

 

 

Основные ткани представлены различными по форме клетками, образующими основную массу тела растений (мягкие части листьев, цветков, плодов, сердцевину стеблей и корней, а также кору). Главная функция этих тканей заключается в синтезе и накоплении питательных веществ. В частности, часть этих тканей представлена хлоропластосодержащими клетками, в которых происходит фотосинтез.

Проводящие ткани (рис. 67) представлены ксилемой (древесина) и флоэмой (луб). Клетки ксилемы дают начало длинным клеткам, называемым трахеидами. Соединяясь между собой концами, трахеиды образуют сосуды древесины. После растворения в них поперечных стенок они превращаются в длинные целлюлозные трубки, по которым и проходит вода. Ксилема проводит воду и растворенные в ней соли от корня к листьям, что представляет собой восходящий (транспирационный) ток.

Флоэма образуется так же, как и ксилема, но с той лишь разницей, что поперечные стенки не устраняются, а сохраняются. Однако в них образуются отверстия, обеспечивающие «проход» органических веществ от листьев к корням. Следовательно, флоэма обеспечивает нисходящий ток, т. е. движение органических веществ от листьев к корням.

 

Похожие статьи:

poznayka.org

Растительные и животные ткани

Для клеток многоклеточных организмов характерна специализация и объединение, в результате которых они образуют структуры, получившие название тканей, из которых формируются органы. Впервые термин «ткань» был использован англичанином Н. Грю еще в 1671 г. С тех пор эти системы стали предметом изучения ученых — гистологов многих поколений. В наше время под тканью понимают систему объединенных клеток и их производных, выполняющих сходные специализированные функции. К этому следует добавить, что ткани являются результатом развития живых форм в ходе филогенеза и онтогенеза.

Клетки объединяются в составе тканей с помощью разных механизмов — «прикрепительных» и «коммуникационных». «Прикрепительный» механизм заключается в том, что клетки с помощью рецепторов адгезии (адгезинов) могут присоединяться к так называемому внеклеточному матриксу, представляющему собой сеть органических молекул (фибриллярных белков) и лигандов, погруженных в полисахаридный гель. Основным белком во внеклеточном матриксе является коллаген, полимерные формы которого сосредоточены в коже, сухожилиях, хрящах, кровеносных сосудах, внутренних органах и т. д. Важнейшей особенностью молекул коллагена является то, что им присуща трехцепочечная спиральная структура. Они могут связываться между собой межклеточными соединениями в виде адгезионного соединения или разных клеточных контактов (десмосом) или контактов между межклеточным матриксом и клетками (полудесмосом).

Помимо «прикрепительных» соединений для клеток в тканях характерны «коммуникационные» соединения, наиболее распространенные из которых получили название щелевых контактов. Различают несколько видов таких контактов. Они могут быть представлены щелями между плазматическими мембранами соседних клеток, заполненными рыхлой сетью органических молекул (внеклеточным матриксом), что обеспечивает щелевой контакт клеток. Далее, щелевые контакты могут иметь вид выпячиваний (выроста) плазматической мембраны одной клетки в плазматическую мембрану другой клетки и слипанием этих выпячиваний. Щелевые контакты позволяют малым молекулам переходить из одних клеток в другие. В случае нервных клеток имеют место синапсы, позволяющие передачу электрических и химических сигналов от одной клетки к другой. Важно подчеркнуть, что любой из названных межклеточных контактов основан на межмембранных связях.

Механизм объединения клеток растений является другим. Поскольку у них нет плазматической мембраны, но есть клеточная стенка, которая содержит каналы, то соединение соседних клеток обеспечивается соединением их цитоплазматическими мостиками (плазмодесмами), представляющими собой цитоплазму, проникающую через каналы.

Организация тканей связана с наличием у клеток обмена информацией, который достигается выделением клетками химических веществ, выполняющих функцию сигналов для других клеток, наличием на поверхностной мембране клеток сигнальных молекул, влияющих на другие клетки при их контакте, и щелевых контактов, позволяющих обмен малыми молекулами. Химическая сигнализация осуществляется с помощью сигнальных молекул, в частности, гормонов, выделяемых эндокринными клетками и воздействующих через кровь на клетки-мишени, а также с помощью локальных химических медиаторов, действующих только на ближайшие (соседние) клетки. В случае нервной системы клетки секретируют нейромедиаторы. Примерами белковых гормонов являются инсулин, соматотропин, адренокортикотропный гормон, тогда как стероидными гормонами являются эстрадиол, тестостерон, кортизол и другие. Сигнальными молекулами являются также некоторые олигопептиды (соматостатин, вазопрессин и др.), адреналин и нейромедиаторы (глицин, ацетилхолин и др.). Примером локальных сигнальных молекул является гистамин, выделяемый клетками соединительной ткани (тучными клетками). Сигнальные молекулы еще называют лигандами. Они связываются со специфическими белковыми рецепторами на поверхности клеток-мишеней, в результате чего акт связывания генерирует сигнал, влияющий на поведение клеток, в частности на их кооперацию, ведущую к образованию тканей. Сигнальными молекулами, синтезируемыми на мембранной поверхности клеток, являются простагландины. Они очень быстро синтезируются и очень быстро разрушаются. Образование тканей (гистогенез) у животных происходит из эктодермы, энтодермы, мезодермы и мезенхимы в период эмбриогенеза, а основными элементами тканей, как отмечено выше, являются клетки и их производные в виде неклеточных структур. Таким образом, ткань можно определить в виде сообщества клеток и их производных со специализированными функциями.

В рамках классификации тканей, основанной на морфофункциональном принципе, у животных и человека различают 5 типов тканей, а именно: эпителиальную, соединительную, мышечную и нервную ткани, а также кровь и лимфу.

Фото: romana klee

Эпителиальная ткань, или эпителий, состоит из клеток, покрывающих поверхность тела, внутренние поверхности внутренних органов (желудок, мочевой пузырь и др.), поверхности серозных оболочек (брюшина, плевра, перикард), а также из клеток, образующих некоторые железы (слюнные железы, поджелудочная железа и др.). Поэтому различают покровный и железистый (секреторный) эпителий. Из эктодермы развивается эпителий кожи, из энтодермы — эпителий желудка, кишечника, легких и др., а из мезодермы — эпителий почек, серозных оболочек и других структур.

Среди покровных эпителиальных тканей различают плоский, кубический, призматический и ресничный эпителий. Плоский эпителий представлен уплощенными клетками, которые образуют поверхностный слой кожи и выстилают ротовую полость, пищевод и влагалище. Как правило, плоский эпителий является многослойным, образует слизистые оболочки пищевода, влагалища, эпидермис кожи и др. Кубический эпителий представлен кубовидными клетками, которые выстилают почечные канальцы, наружную поверхность яичника и другие органы. Призматический эпителий представлен клетками цилиндрической формы, им выстлан желудок, кишечник, матка и другие органы. Ресничный эпителий представлен клетками, на поверхности которых имеются реснички. Биение этих ресничек обусловливает перемещение слизи и других веществ по эпителиальному слою. Железистый эпителий представлен клетками призматической или кубической формы, которые продуцируют секрет. Они функционируют либо как одноклеточные железы, секретируя разные секреты, либо формируют многоклеточные железы, получившие название эндокринных желез, т. к. они выделяют продукты своей деятельности (гормоны) в кровь и лимфу.

Соединительные ткани представлены собственно соединительной, костной и хрящевой тканями, развивающимися из мезенхимы. Они состоят из клеток и межклеточного вещества. Исходя из структуры и свойств межклеточного вещества, различают несколько типов этой ткани. Волокнистая соединительная ткань представляет собой волокна (коллаген) и межклеточное вещество (протеогликаны и гликопротеиды), окружающие соединительнотканные клетки (фибробласты, макрофаги, тучные клетки) и являющиеся продуктом этих клеток. Эта ткань образует строму многих внутренних органов, основу слизистых оболочек, соединяет кожу с мышцами, участвует в формировании надкостницы.

Костная ткань формирует скелет организма. Она состоит из костных клеток (остеоцитов, остеобластов и остеокластов) и выделяемого ими основного вещества кости, содержащего белки, из которых преобладающим является коллаген, и соли кальция. Хрящи также формируют скелет (в эмбриональном состоянии). У взрослых хрящевой скелет имеется лишь у акул и скатов. Хрящевая ткань состоит из клеток (хондриоцитов, прехондроблас-тов и хондробластов) и межклеточного вещества (в основном коллагена). Соединительные ткани выполняют опорную, трофическую, защитную и другие функции.

Кровь и лимфа являются тканями, которые начинают развиваться уже в эмбриональном периоде жизни организмов из мезенхимы, а затем из так называемых полипотентных стволовых клеток крови (СКК). У человека развитие первых клеток крови идет синхронно с сосудами, развивающимися вначале в стенке желчного мешка, а затем в печени, красном костном мозге, тимусе, селезенке, лимфатических узлах эмбриона. Образование крови и лимфы происходит и на протяжении всего постэмбрионального периода. Важнейшими функциями крови являются трофическая, дыхательная и транспортная. Кровь является очень сложным образованием, составляющим у человека примерно 5-9% массы тела. В ее составе различают плазму и форменные элементы — эритроциты, лейкоциты и тромбоциты (кровяные пластинки). Плазма крови состоит на 90—93% из воды, в которой содержатся белки, углеводы, жиры и минеральные вещества. Эритроциты, или красные кровяные тельца (шарики), представляют собой безъядерные овальные клетки, диаметр которых составляет 7,1-7,9 мкм. 1 мл крови мужчины содержит 3,9— 5,5 х 109 эритроцитов, а 1 мл крови женщины — 3,7—4,9 х 109. Основной функцией эритроцитов является транспортировка кислорода и углекислоты.

Лейкоциты (белые кровяные клетки) подразделяют на гранулоциты и агранулоциты. В составе гранулоцитов на основе отношения их к красителям различают нейтрофилы, эозинофилы и базофилы. В составе агранулоцитов различают лимфоциты и моноциты. Лимфоцитов в крови довольно много (20—35%). Они очень полиморфны. Их размеры составляют 4,5—10 мкм. Поскольку для них характерно разное происхождение, то различают Т-лимфоциты, образование которых происходит в тимусе, и В-лимфоциты, образующиеся в красном костном мозге. Эти лимфоциты различаются и по функциям.

Моноциты являются клетками размером 18-22 мкм. Их доля среди лейкоцитов составляет 6—7%. Эти клетки постоянно мигрируют в соединительную ткань, где они дают начало макрофагам. Лейкоциты выполняют защитную функцию (участвуют в формировании иммунитета). Тромбоциты (красные кровяные пластинки) — это безъядерные тельца размером 2—3 мкм. Являясь составной частью тромбоксилазы, они принимают участие в свертывании крови. Лимфа, подобно крови, также состоит из жидкой части и форменных элементов. Жидкой частью является лимфоплазма, а форменные элементы представлены в основном лимфоцитами. В лимфе встречаются также моноциты, но в небольшом количестве. Основная функция лимфы заключается в регулировании циркуляции лимфоцитов, а также оттока различных жидкостей и находящихся в ней метаболитов от органов.



biofile.ru

Типы тканей животных — Науколандия

Тела многоклеточных животных состоят из разных типов клеток, выполняющих разные функции в организме. Каждый тип клеток включает не одну клетку, а множество схожих. Таким образом, обычно говорят о типах тканей (в данном случае животных), а не типах клеток.

Ткань составляют не только клетки, но и вещество между этими клетками. Это вещество выделяется клетками ткани и называется межклеточным. Ткани отличаются между собой в том числе и количеством межклеточного вещества. В одних тканях животных его много, в других — клетки плотно прилегают друг к другу и межклеточного вещества почти нет.

Таким образом, ткань представляет собой совокупность клеток, имеющих сходное строение и функции, а также выделяемое этими клетками межклеточное вещество.

Выделяют четыре основных типа тканей животных: покровную, соединительную, мышечную и нервную. У каждого типа ткани есть свои подтипы. Поэтому говорят, например, не о соединительной ткани, а о соединительных тканях.

Покровные ткани

Покровные ткани по-другому называются эпителиальными.

Покровные ткани выстилают не только поверхности тела, но и полости внутренних органов. Так желудок, кишечник, ротовую полость, мочевой пузырь и др. изнутри выстилают покровные ткани.

В эпителиальных тканях почти нет межклеточного вещества. Их клетки плотно прилегают друг к другу и формируют от одного до нескольких слоев.

Основные функции эпителия — защита, выработка секрета, газообмен, всасывание, выделение.

Защитная функция выражается в предохранении более глубоких тканей животного от повреждения, перепадов температуры, попадания вредных микроорганизмов. Такую функцию выполняет кожа.

Всасывающая функция эпителия характерна для кишечника. Здесь питательные вещества с помощью ворсинок кишечника всасываются в кровь.

Секреторная функция покровных тканей животного наблюдается в желудке, где его клетки выделяют слизь. Различные железы есть также в коже.

Функцию газообмена осуществляет эпителий легких, у некоторых животных в газообмене принимает участие также кожа.

Выделительную функцию выполняет эпителий органов выделения.

Соединительные ткани

В отличие от покровных тканей, в соединительной много межклеточного вещества, в котором находятся относительно немногочисленные клетки.

Соединительные ткани формируют кости, хрящи, сухожилия, связки, жировую ткань, а также кровь. Они выполняют опорную, защитную, связывающую и другие функции.

Кровь относят к соединительной ткани, так как она связывает между собой различные органы и системы органов. Так кровь переносит кислород от легких ко всем клеткам организма, а обратно — углекислый газ. Из пищеварительной системы кровь доставляет клеткам питательные вещества. Вредные вещества переносит в выделительную систему.

Мышечные ткани

Главная функция мышечной ткани — это обеспечение движения животного. Это происходит за счет попеременного сокращения и расслабления клеток, составляющих мышечную ткань. Управляет этими процессами нервная ткань.

Клетки мышечной ткани имеют вытянутую форму.

Существует два основных типа мышечной ткани: поперечно-полосатая и гладкая. Первая формирует скелетную мускулатуру животного. Гладкие мышцы входят в состав внутренних органов. Клетки гладких мышц вытянутые, но более короткие, чем у поперечно-полосатой мышечной ткани, у которой клетки длинные со множеством ядер.

Нервная ткань

Нервная ткань состоит из особых клеток — нейронов. У этих клеток есть тело и отростки, таким образом клетка имеет звездчатую форму. Отростки бывают двух видов: короткие и длинные. По отросткам передаются раздражения от различных органов тела в спинной и головной мозг (которые состоят из нервной ткани). Здесь информация обрабатывается, после чего от нервной ткани к органам передается возбуждение, представляющее собой реакцию организма на раздражение.

Функция нервной ткани — согласование работы различных органов сложного организма, управление им, реакция на воздействия окружающей среды и др.

scienceland.info