Лекарственные растения и травы

Меню сайта

Наследственная изменчивость: особенности и значение. Наследственная изменчивость примеры растений


какую роль играют мутации в процессе эволюции, мутационная, генотопическая, комбинативная изменчивость, характеристика и примеры

Сохранение жизни на земле обеспечивает наследственная изменчивость. Наследственность отвечает за передачу признаков из поколения в поколение, изменчивость за появление новых признаков у вида.

Симбиоз двух этих свойств очень успешен и дает возможность новому развитию организмов, расширению возможностей и сферы обитания.

Наследственная или генотипическая изменчивость определяется генетическими различиями между особями или группами особей. Генотипическая изменчивость может быть комбинативной и мутационной.

Мутационная изменчивость

Форма генотипической изменчивости. Так называют изменение генотипа, способствующее появлению новых признаков у наследственного материала.

Виды мутаций и их характеристика

Мутации бывают доминантные, проявляющиеся в первом поколении и рецессивные, полезные и вредные.

Типы мутаций различают по способу возникновения:

  • спонтанные или случайные, возникающие при нормальных условиях жизни и зависящие от внешних и внутренних факторов;
  • индуцированные, полученные с помощью мутагенов различной природы.

По характеру проявления:

  • доминантные, проявляющиеся в первом поколении;
  • рецессивные, часто понижающие жизнеспособность.

По месту возникновения:

  • генеративные — представляют собой мутации, возникающие в половых клетках или спорах и проявляющиеся через поколение;
  • соматические, наследуемые при вегетативном размножении.

По уровню возникновения:

  • генные. Их причины появления — изменение геномной последовательности нуклеотидов в ДНК;
  • хромосомные перестройки – изменения структуры хромосом в результате разрыва хромосомы;
  • геномные – изменение числа хромосом. Геном — это комплекс генов организма определенного вида.

Какую роль играют мутации в процессе эволюции

Три кита, на которых стоит эволюционный процесс – наследственность, изменчивость, отбор. Мутации служат топливом для длительной биологической эволюции живой материи и естественного отбора.

Первым звеном эволюционного процесса является микроэволюция, которая протекает внутри популяций, при скрещивании особей с различными генотипами.

Генный состав популяции меняется при естественном отборе и способствует появлению нового подвида.

Комбинативная изменчивость

Вторая форма генотипической изменчивости. Вызывается расщеплением и перекомбинацией мутаций и связана с получением новых сочетаний генов в генотипе, что приводит к появлению организмов с новыми фенотипом и различиями.

Механизмы комбинативной изменчивости:

  • взаимный обмен участками парных хромосом, приводящий к перераспределению локализованных в них генов в процессе деления клеток;
  • независимое расхождение хромосом;
  • случайное сочетание гамет при оплодотворении;
  • взаимодействие генов.

Примеры комбинативной изменчивости

Рекомбинация генов может привести к объединению признаков разных пород и сортов. Примеры:

  • появление розовых цветков бывает при скрещивании белых и красных цветков;
  • при спаривании белых и серых хомяков может появиться черное потомство;
  • группы крови также регулируются комбинативной изменчивостью.

Какие структуры клетки определяют наследственность и изменчивость

В наследственности ведущую роль из всех органоидов клетки играют хромосомы, способные к самоудвоению и формированию с помощью генов всего комплекса характерных для вида признаков.

Ядро клетки — носитель наследственной информации в молекулах ДНК. Опираясь на ядерную наследственность, которая определяет наследование почти всех компонентов, дают характеристику наследственным признакам.

Виды мутаций у человека

Человеку присущи следующие виды:

  • хромосомные, возникшие в процессе клеточного деления и изменения структуры хромосом;
  • геномные, зависящие от добавления или утраты набора хромосом;
  • случайные, появившиеся при действии неизвестного мутагена;
  • генные — это самые распространенные мутации, возникшие при выпадении нуклеотида или возникновении лишнего.

Какие мутации передаются по наследству

Наследственные мутации происходят при серьезных изменениях ДНК. Изменения и повреждения появляются на начальных этапах разделения яйцеклетки, абсолютно здоровые родительские клетки не являются гарантом отсутствия сбоя.

Хромосомные болезни делятся на два варианта:

  1. В первом варианте болезнь обусловлена количеством хромосом. Чаще всего выявляется синдром Дауна. На сегодня этот синдром считается самым изученным и проработанным из всех хромосомных аномалий.
  2. Второй вариант включает в себя заболевания, возникшие при структурных изменениях в хромосомах. К признакам данных патологий относят: задержку роста, низкий лоб, умственную отсталость, округлость кончика носа, глубокую посадку глаз, врожденные пороки сердца, раздвоенные почки и прочие.

Примеры наследственных заболеваний

Следующие заболевания передаются по наследству:

  • гемофилия;
  • альбинизм;
  • серповидно-клеточная анемия;
  • шизофрения;
  • косолапость.

Заключение

Полезность, вредность или нейтральность мутации зависит от условий, в которых живет организм. Мутация нейтральная или даже вредная для одного организма, может оказаться полезной формой существования для другого организма.

Вредность мутации, как правило, обнаруживается немедленно, а ее полезность часто определяется задним числом. Полезными считаются те мутации, которые служат популяциям источниками адаптации к изменяющимся условиям среды обитания.

1001student.ru

Наследственная изменчивость

Наследственная изменчивость

Комбинативная изменчивость. Наследственную, или геноти-пическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

  1. Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
  2. Взаимный обмен участками гомологичных хромосом, или кроссинговер (см. рис. 3.10). Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
  3. Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:

  1. Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
  2. В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
  3. Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
  4. Вероятность обнаружения мутаций зависит от числа исследованных особей.
  5. Сходные мутации могут возникать повторно.
  6. Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации— результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции ("выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -> ГЦ; AT ->; ЦГ; или AT -> ТА), инверсии (переворот участка гена на 180°).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B-цепи молекулы гемоглобина (глутаминовая кислота —» —> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов (рис. 3.13):

  1. нехватка, или дефишенси, — потеря концевых участков хромосомы;
  2. делеция — выпадение участка хромосомы в средней ее части;
  3. дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;
  4. инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;
  5. транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.

3.13. Хромосомные перестройки, изменяющие расположение генов в хромосомах.

Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, — полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии (см. § 3.3).

Анеуплоидия, или гетероплодия, — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.

Спонтанные и индуцированные мутации. Спонтанными называют мутации, возникающие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при воспроизведении генетического материала (ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагенез — это искусственное получение мутаций с помощью физических и химических мутагенов. Резкое увеличение частоты мутаций (в сотни раз) происходит под воздействием всех видов ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетового излучения, высоких и низких температур. К химическим мутагенам относятся такие вещества, как формалин, азотистый иприт, колхицин, кофеин, некоторые компоненты табака, лекарственных препаратов, пищевых консервантов и пестицидов. Биологическими мутагенами являются вирусы и токсины ряда плесневых грибов.

В настоящее время ведутся работы по созданию методов направленного воздействия различных мутагенов на конкретные гены. Такие исследования очень важны, поскольку искусственное получение мутаций нужных генов может иметь большое практическое значение для селекции растений, животных и микроорганизмов.

Закон гомологических рядов в наследственной изменчивости. Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости. Он был сформулирован выдающимся русским ученым Н. И. Вавиловым в 1920 г. Сущность закона заключается в следующем: виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости. Зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида.

В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.

Более того, у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Это означает, что у представителей разных семейств и классов растений и животных со сходным набором генов можно встретить параллелизм — гомологические ряды мутаций по морфологическим, физиологическим и биохимическим признакам и свойствам. Так, у разных классов позвоночных встречаются сходные мутации: альбинизм и отсутствие перьев у птиц, альбинизм и бесшерстность у млекопитающих, гемофилия у многих млекопитающих и человека. У растений наследственная изменчивость отмечена по таким признакам, как пленчатое или голое зерно, остистый или безостый колос и др.

Закон гомологических рядов, отражая общую закономерность мутационного процесса и формообразования организмов, представляет широкие возможности для его практического использования в сельскохозяйственном производстве, селекции, медицине. Знание характера изменчивости нескольких родственныхх видов дает возможность поиска признака, который отсутствует у одного из них, но характерен для других. Таким путем были собраны и изучены голозерные формы злаков, односемянные сорта сахарной свеклы, не нуждающиеся в прорывке, что особенно важно при механизированной обработке почв. Медицинская наука в качестве моделей для изучения болезней человека получила возможность использовать животных с гомологическими заболеваниями: это сахарный диабет крыс; врожденная глухота мышей, собак, морских свинок; катаракта глаз мышей, крыс, собак и др.

Закон гомологических рядов позволяет также предвидеть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм.

sbio.info

Изменчивость: наследственная и ненаследственная | Биология. Реферат, доклад, сообщение, краткое содержание, конспект, сочинение, ГДЗ, тест, книга

Вопрос 1. Какие виды изменчивости вам из­вестны?

Существует два основных вида изменчивос­ти — ненаследственная и наследственная.

Ненаследственная (фенотипическая или модификационная) изменчивость — это процесс появления новых признаков под влиянием факторов внешней среды, не затра­гивающих генотип. В качестве примера можно привести дуб, листья которого в процессе раз­вития приобрели разную площадь в зависи­мости от освещенности (маленькую — при яр­кой освещенности, большую — при слабой).

Наследственная изменчивость связа­на с изменениями генотипа; признаки и свой­ства, приобретенные вследствие этого, переда­ются следующим поколениям.

Существует два типа наследственной из­менчивости — комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате об­разования новых комбинаций генов родителей в генотипах потомков. Комбинативную измен­чивость обеспечивают случайное расхождение гомологичных хромосом в мейозе, обмен уча­стками гомологичных хромосом в профазе I мейоза, случайная встреча гамет при оплодот­ворении, случайный выбор родительских пар.

Мутационная изменчивость обусловлена изменениями генов и хромосом.

Вопрос 2. Что такое норма реакции?

Норма реакции (иначе — пределы моди­фикационной изменчивости) — это пределы, в которых возможно изменение признака при определенном генотипе. Норма реакции мо­жет быть как очень широкой (вес человека), так и очень узкой (группа крови). Обычно узкой нормой реакции обладают признаки, обеспечивающие жизненно важные качества организма. Важно также то, что от родителей потомству передается не жестко запрограмми­рованное значение того или иного признака, а его норма реакции.

Вопрос 3. Почему фенотипическая изменчи­вость не передается по наследству?

Фенотипическая изменчивость не затраги­вает генотип, обеспечивая лишь то или иное проявление заложенных в нем признаков. Она обычно предсказуема и у разных особей одного вида проходит однонаправленно. Например, если пшеничное поле не получает достаточно влаги, то у всех его растений плохо форми­руется колос. Генотип у особей в этом случае остается неизменным, поэтому передачи ин­формации о модификациях потомству не про­исходит. Следовательно, фенотипическая из­менчивость не наследуется.

Вопрос 4. Что такое мутации? Охарактеризуйте основные свойства мутаций.

Мутации — это внезапные естественные или вызванные искусственно изменения гене­тического материала, приводящие к измене­нию тех или иных фенотипических признаков и свойств организма. Основные свойства мута­ций:

  • спонтанность — мутации возникают слу­чайно;
  • неспецифичность — могут возникать в любом участке генома;
  • скачкообразность — вызывают новые ка­чественные изменения;
  • ненаправленность — возникшие изме­нения генотипа и фенотипа могут быть как биологически вредными, так и полезны­ми.

Вопрос 5. Приведите классификацию мутаций по уровню изменений наследственного материала.

Различают три основных типа мутаций: Материал с сайта //iEssay.ru

  • генные мутации вызывают изменения в отдельных генах, нарушая порядок и число нуклеотидов в цепи ДНК. Это приводит к син­тезу измененного (как правило, дефектного) белка. Следствием генных мутаций являются такие заболевания, как фенилкетонурия и мы­шечная дистрофия Дюшена;
  • хромосомные мутации затрагивают значительный участок хромосомы, вызывая нарушения сразу в нескольких (иногда — мно­гих) генах. Описаны случаи потери участка хромосомы, его переворота, перемещения, удвоения и т. п.;
  • геномные мутации приводят к измене­нию числа хромосом в кариотипе. Они возни­кают в результате нарушения расхождения го­мологичных хромосом. Примером может слу­жить синдром Дауна, который возникает при появлении лишней 21-й хромосомы. При этом общее число хромосом становится равным 47. Другим примером геномных мутаций являет­ся формирование полиплоидных растений (ча­ще всего тетраплоидных).

Вопрос 6. Назовите основные группы мутаген­ных факторов. Приведите примеры мутагенов, от­носящихся к каждой группе.

Мутагенные факторы можно разделить на три группы:

  • физические мутагены — все типы ионизирующих излучений (у-лучи, рентгенов­ские лучи), ультрафиолетовое излучение, вы­сокая и низкая температура;
  • химические мутагены — аналоги нук­леиновых кислот, перекиси, соли тяжелых ме­таллов (свинца, ртути), азотистая кислота, многие органические соединения;
  • биологические мутагены — чужерод­ная ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов.
На этой странице материал по темам:
  • Примеры наследственной изменсивости
  • норма реакции это кратко
  • примеры наследственной и ненаследственной изменчивости у растений
  • Доклад на тему наследственная изменчивость
  • ненаследственная фенотипичаская наследственность

iessay.ru

особенности и значение :: SYL.ru

В нашей статье речь пойдет об уникальном свойстве всех живых организмов, которое обеспечило возникновение огромного количества видов живых существ. Это наследственная изменчивость. Что это такое, каковы ее особенности и механизм осуществления? На эти и многие другие вопросы вы сейчас найдете ответы.

Что изучает генетика

Сравнительно молодая наука генетика в 19-м веке открыла человечеству многие тайны его происхождения и развития. А предметом ее изучения являются только два свойства живых организмов: наследственность и изменчивость. Благодаря первому обеспечивается преемственность поколений и осуществляется точная передача генетической информации в целом ряду поколений. А вот изменчивость обеспечивает возникновение новых признаков.

Значение изменчивости

Зачем же организму приобретать эти новые признаки? Ответ достаточно прост: для возможности адаптации. На фото ниже перед вами представители нескольких рас одного биологического вида - Человек Разумный. Их морфологические различия на данном этапе не имеют, естественно, никакого приспособительного значения. А вот их далеким предкам новые черты помогали выжить в тяжелых условиях. Так, представители монголоидной расы имеют узкий разрез глаз, поскольку в степях часто были пыльные бури. А негроиды имеют темную кожу в качестве защиты от палящих солнечных лучей.

Виды изменчивости

Изменчивостью называют свойство организмов приобретать новые признаки в процессе их исторического и индивидуального развития. Она бывает двух видов. Это модификационная и наследственная изменчивость. Их объединяет ряд признаков. Например, неизбежно возникают изменения во внешнем строении организмов. Но вот по продолжительности существования модификаций и степени действия они абсолютно отличаются.

Модификационная изменчивость

Этот вид изменчивости является ненаследственным. Он не закрепляется в генотипе, не носит постоянный характер и возникает под воздействием изменений условий окружающей среды. Ярким примером модификационной изменчивости может служить известный опыт с кроликом. Ему сбривали небольшой участок серой шерсти. А на голый участок кожи прикладывали лед. Через некоторое время на этом месте вырастала шерсть белого цвета, которую также сбривали. Но лед в этом случае не прикладывали. В результате на данном участке снова вырастали волосы темного цвета.

Наследственная изменчивость

Данный вид изменчивости носит постоянный характер, поскольку затрагивает структуру генотипа до уровня нуклеотидов ДНК. При этом новые признаки передаются новым поколениям. Наследственная изменчивость, в свою очередь, также бывает двух типов: комбинативная и мутационная. Первая возникает в случае появления нового сочетания генетического материала. Ее самым простым примером служит слияние гамет в ходе полового размножения. В результате организм, получая по половине генетической информации от мужского и женского организма, приобретает новые признаки.

Второй вид - это мутационная наследственная изменчивость. Она заключается в возникновении резких ненаправленных изменений генотипа под воздействием различных факторов. Ими могут быть ионизирующее и ультрафиолетовое излучение, высокая температура, азотсодержащие химические вещества и другие.

В зависимости от уровня структуры генетического аппарата, в котором происходят изменения, различают несколько типов таких наследственных модификаций. При геномных изменяется число хромосом в общем наборе. Это ведет к анатомическим и морфологическим изменениям в организме. Так, появление третьей хромосомы в 21-й паре вызывает болезнь Дауна. При хромосомных мутациях возникает перестройка этой структуры. Они встречаются гораздо реже, чем геномные. Участки хромосом могут дублироваться или отсутствовать, перекручиваться, изменять свое положение. А вот генные мутации, которые также называют точечными, нарушают последовательность мономеров в структуре нуклеиновых кислот.

Независимо от вида мутаций, все они, как правило, не несут для организма полезных признаков. Поэтому человек учится управлять ими искусствено. Так, в селекции часло используется полиплоидия - кратное увеличение числа хромосом в наборе. В результате растение становится более мощным и дает крупные плоды в большом количестве. Никого уже не удивишь инжирным персиком и другими вкусными растительными гибридами. А ведь они являются результатом искусственно проведенной наследственной изменчивости.

Наследственная изменчивость в процессе эволюции

Развитие генетики помогло сделать значительный шаг вперед и в развитии эволюционного учения. Тот факт, что человека и обезьяну отличает лишь одна пара хромосом, стал существенным доказательством теории Дарвина. У растений и животных в историческом развитии можно проследить наследование прогрессивных черт, которые передавались и закреплялись в генотипе. К примеру, водоросли вышли на сушу благодаря тому, что в генотипе закрепился признак наличия механической и проводящей тканей. Каждое последующее поколение оставляло для себя только нужные, полезные признаки, которые корректировались в зависимости от условий обитания и окружающей среды. Так появились господствующие виды растений и животных, обладающие самыми прогрессивными чертами строения.

Итак, наследственная изменчивость - это способность организмов приобретать новые признаки, которые закрепляются в генотипе. Такие изменения носят продолжительный характер, не исчезают при изменении условий среды и передаются по наследству.

www.syl.ru

Наследственность и изменчивость древесных растений

Наследственность и изменчивость древесных растений

Генетика – это наука, которая изучает механизмы и закономерности наследственности и изменчивости организмов, а также методы управления этими процессами.

Наследственностью называют свойство организмов обеспечивать материальную и функциональную преемственность поколений, определенный план строения и характер их индивидуального развития, а также норму реакции на условия внешней среды.

Изменчивостью называют различия признаков и свойств между двумя или группой особей, предками и потомками одного и того же или разных видов растений и животных.

Наследственность и изменчивость изучается на разных уровнях организации живой материи: молекулярном, хромосомном, клеточном, организменномипопуляционном. Первые уровни будут более подробно рассмотрены далее.

Что же касается организменногоипопуляционного уровня, то изучаемая на них изменчивость может быть разделена еще на несколько групп: метамерная изменчивость (различия отдельных частей организма), индивидуальная изменчивость (различия у отдельных особей), групповая, или внутрипопуляционная изменчивость (различия в группе особей одного вида), межпопуляционная изменчивость и надвидовая изменчивость.

При изучении изменчивости выделяют качественные и количественные признаки. По характеру изменения признаков различают прерывистую и непрерывную (клинальную) изменчивость. Эти типы изменчивости отмечают при рассмотрении признака во времени и пространстве. Примером прерывистой изменчивости во времени могут служить возрастные изменения светолюбия сосны обыкновенной. Примером прерывистой изменчивости в пространстве могут служить изменения, вызванные резким перепадом экологических и климатических условий, получившие название экологической и географической изменчивости. Непрерывную изменчивость можно наблюдать, например, на приросте запаса древесины в лесу. Непрерывно падает бонитет древостоя в одном и том же типе леса в направлении с юго-запада на северо-восток.

С.А. Мамаев предлагает делить изменчивость древесных растений на два типа: внутривидовую и внутриорганизменную, или эндогенную. Внутривидовая изменчивость подразделяется на несколько форм: индивидуальную, половую, хронографическую (сезонную и возрастную), экологическую, географическую и гибридогенную.

В зависимости от того передаются ли изменения потомству, изменчивость делят на две категории: наследственную (возникающую в результате мутаций и рекомбинаций) и ненаследственную, или модификационную.

 

 

5.Методы изучения наследственности.

Анализ наследственности осуществляется в основном на трех уровнях организации живой материи (молекулярно-клеточном, организменном и популяционном, или групповом). Для изучения наследственности на каждом из этих уровней используется своя группа методов.

К первой группе – относятся цитологический, биохимический и молекулярно-генетический методы, которые служат для изучения структуры материаль­ных носителей наследственности. Цитологический метод направлен на изучение структур и органелл клетки. Биохимический метод использу­ется для изучения структуры химических компонентов клетки и метаболических процессов, происходящих в клет­ках на различных этапах ее развития. Из биохимического метода позднее, в качестве самостоятельного, выделился молекулярно-генетический метод, объектом анализа которого служат изменения в структуре нуклеиновых кислот.

Ко второй группе – относятся гибридологический и генеало­гический методы, с помощью которых определяются законо­мерности наследования того или иного признака или группы признаков. Гибридологический метод(классический метод генетического анализа) изучает характер наследования признаков по анализу потомков (при скрещивании особей, различающихся по контрастным (альтернативным) признакам). Генеалогический метод изучает характер наследования признаков по анализу предков.

Характерной особенностью третьей группы методов изуче­ния наследственности, к которой относятся приемы популяционно-статистического анализа, является изучение степени влияния генов и факторов внешней среды на развитие признаков и свойств организмов. Сущность этого метода со­стоит в том, что на достаточно репрезентативной выборке осо­бей одного вида или сорта, определяется средняя величина признака и другие статистические параметры. Основная за­дача метода – определение коэффициента наследуемости с целью оценки пригодности изучаемого признака для целей селекции.

 

10.

Кроссинго́вер — явление обмена участками гомологичных хромосом во время конъюгации при мейозе. Помимо мейотического описан также митотический кроссинговер.

Биологическое значение кроссинговера.

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что…

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций)

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

11.

12.

Моногибридное скрещивание – это скрещивание, при котором родительские формы различаются по одной паре альтернативных признаков.

Особи, которые не дают в потомстве ращепления и сохраняют свои признаки в «чистом» виде, называют гомозиготными, а те, у которых в потомстве происходит ращепление,- гетерозиготными.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения функционирования клеток, тканей и органов, называется фенотипом.

Признаки и свойства организма проявляются под контролем наследственных факторов, т.е. генов. Совокупность всех генов организма называют генотипом.Алле́ли — различные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.Домина́нтность (доминирование) — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.

РЕЦЕССИВНОСТЬ форма взаимоотношений двух аллельных генов, при которой один из них (рецессивный) оказывает менее сильное влияние на соответствующий признак, чем другой (доминантный). Моногибридное скрещивание. Первый закон Менделя.

В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (т.е. гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семена (желтого или зеленого) выросли материнские (отцовские) растения. Итак, оба родителя в равной степени способны передавать свои признаки потомству. Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки. Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д. Обнаруженная закономерность получила название первый закон Менделя, или закон единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии - гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель - большой, а рецессивный - маленькой.

 

13.

Наследование при дигибридном скрещивании. При моногибридном скрещивании родительские формы отличаются по одной паре признаков или аллелей гена. Совершенно очевидно, что в большинстве случаев организмы различаются по многим генам. Чтобы проанализировать наследование нескольких при­знаков, необходимо разложить эти сложные явления на более простые составные элементы, а затем представить весь процесс в целом. Так поступал в своей работе Г. Мендель. Он изучил наследование каждой пары признаков в отдельности, не обра­щая внимания на другие пары, а затем сопоставил и объединил все эти наблюдения.

Гибриды, полученные от скрещивания организмов, разли­чающихся двумя парами альтернативных признаков, были на­званы дигетерозиготами, тремя парами — тригетерозиготами,, многими признаками — полигетерозиготами, а скрещивания со­ответственно ди-, три- и полигибридными. Для дигибридного скрещивания Г. Мендель взял гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Мате­ринское растение имело гладкие семена желтой окраски, отцов­ские — морщинистые зеленые семена. Гибрид первого поколения этого скрещивания имеет гладкие и желтые семена. Следова­тельно, гладкая форма семени доминирует над морщинистой, а желтая — над зеленой. Обозначим аллели гладкой формой А, морщинистой а, аллели желтой окраски В, зеленой b . Гены, определяющие развитие разных пар признаков, называются неаллельными. В данном случае гены формы семени А и а неаллельны генам окраски b и В. Неаллельные гены обозна­чают разными буквами алфавита.

Родительские растения имели генотипы ААВВ и aabb и об­разовывали гаметы соответственно АВ и ab. В этом случае гено­тип гибрида f1 будет АаВЬ, т. е. он является дигетерозиготным.Таким образом, неаллельные гены при образовании гамет свободно комбинируются между собой, благодаря чему образуются новые комбинации генов (Ab и ab) по сравнению с ро­дительскими формами и новые комбинации признаков у гибридов рь — гладкие зеленые семена и морщинистые желтые. Появле­ние новых комбинаций признаков в результате скрещивания получило название комбинативной изменчивости. Комбинативная изменчивость играет большую роль в эволюции, так как она дает новые сочетания приспособительных призна­ков, возникающих при скрещивании. Она постоянно исполь­зуется и в селекции для улучшения пород животных и сортов растений путем скрещиваний.

14.

Мутация –это внезапно наследуемые изменения генетического материала которые могут возникнуть спонтанно либо могут быть индуцированны внешним воздействием на организм. Процесс возникновения мутации называется мутагенезом.

Существует следующая классификация мутаций:

· По характеру изменения генома мутации подразделяются:

Генные

Хромосомные

Геномные (изменение числа хромосом)

· По происхождению:

В спонтанные (без видимых причин)

Индуцированные (вызваны искусственно)

· По проявлению:

Доминантные

Рецессивные

Основное внимание при изучении генных мутаций уделяют нуклеотидам ДНК.

Генные мутации подразделяют на следующие группы:

Ø Транзиция - замена азотистых оснований: пуриновых на пуриновые, пиримидиновых на пиримидиновые. При этом изменяется только тот кодон, в котором произошли танзиции.

Ø Трансверсия - замена пуриновых оснований на пиримидиновые или пиримидиновые на пуриновые.

Ø Вставки – происходит вставка линий пары нуклеотидов

Ø Выпадение – выпадение пары нуклеотидов

Генные мутации обычно затрачивают единичные гены, по этому они образуются наиболее часто. С ними связан большинство изменений: морфологических, биохимических, физиологических признаков организма.

 

16.

По причинам вызывающим мутации их подразделяют на спонтанные и индуцированные.

Спонтанные мутации происходят под действием естественных мутагенных факторов, без вмешательства человека.

Индуцированные мутации - результат направленного воздействия определенных мутагенных факторов.

18.

Под полиплоидией понимают кратное увеличение основного числа хромосом в ядре, а всякое отклонение числа хромосом от нормального диплоидного в сторону как увеличения, так и уменьшения, а также кратное и некратное называют гетерополиплоидией или гетероплоидией.

В 1916 г. Г. Винклер, изучая прививки паслена на томат, обнаружил в местах соединения привоя и подвоя клетки с увеличенным набором хромосом. Ученый назвал это явление полиплоидией (от греч. poly — многократный и plooseidos — вид).

Интерес к полиплоидии еще больше возрос в 40-х годах XX в., когда американские исследователи Блексли и Эйвери, а также Эйгсти, Небель и Раттл (1937) провели многочисленные успешные опыты по обработке семян и растений колхицином с целью получения полиплоидов и разработали основные способы удвоения числа хромосом в клетках растений.

Механизм действия колхицина на делящиеся клетки состоит в том, что он блокирует веретено деления в метафазе, в результате чего дочерние хромосомы не расходятся к полюсам, а остаются в центре материнской клетки (С-митоз или K-митоз).

Экспериментально возникшая в 30-х годах XX в. полиплоидия стала играть огромную роль в селекции сельскохозяйственных растений, а также в генетической инженерии.

20.

Популяция – совокупность особей одного вида, длительно населяющих определ. террит. и имеющих сходный генофонд в следствие свободного скрещивания между собой.

Обширность ареола, население популяций, зависит от многих факторов

Одним из факторов явл. подвижность особей.

Совокупность всех генов в популяции наз. генофондом. Генофонды популяций объед. и образуют генофонд вида.

В популяции могут сущ-ть чистые линии – гомозиготные организмы. Поэтому отбор может идти только в полиморфных популяциях.

Все популяции можно разделить на 3 категории, в зависимости от степени их изоляции, от регулярности и постоянства связей м/у особями разных популяций.

1. географические- разобщены географ факторами(горы, реки)

2. экологические- разобщены м/ду соб вследствие действия эколог факторов(сезонность)

3. элементарные- изоляция в таких популяциях носит эпизодический характер.В этих попул-х осущ-ся регулярн и частые миграции особей из одной популяции в другую.

Наследственность популяции- распределение в ней генотипов и фенотипов аллелей.Генетич состав попул относительно постоянен.

 

21.

Основные положения хромосомной теории наследственности

Сформулировал Морган: 1. главным клеточными структурами ответственными за передачу наследственной информации, явл хромосомы кот содержат гены – носители генетической информации. 2. в хромосомах гены расположены линейно, в пределах одной хромосомы гены образуют одну группу сцепления. Число групп сцепления равно гаплоидному числу хромосом. 3. В мейозе между гомологичными хромосомами мажет происходить кроссинговер, что явл основой биологического разнообразия видов и базой для естественного отбора организмов.

В ядре наход хромосомы. Различ два вида хромосом гаплоидный и диплоидный. На стадии метафазы и ранней анафазы митоза и мейоза легче всего опред форму и размер хромосом. Совок всех морф признаков назыв кариотипом. Форма каждой хромосомы определяется положением первичной перетяжки, где располагается центромера. Ген – элементарная единица наследственности. Ген часть хромосомы ответственная за проявления отдельного признака организма. Гены отдельн признаков лежат в опред местах хромосом – локусах. Хромосомы в клетках парные. Парные гены назыв аллеями. Гены классифицируют по признакам которыми они управляют. Аддитивные гены имеют слабый эффект контролируют один и тот же признак. Гены доминантные вызывает выраженность признака. Рецессивный ген – это ген действ кот проявляется очень слабо или совсем не проявляется. Эпистатические гены если один ген по отношению к другоме доминантен и если эти гены не аллельны.

 

Гетерозис.

Гетерозис — увеличение жизнеспособности гибридов вследствие унаследования определённого набора аллелей различных генов от своих разнородных родителей. Это явление противоположно результатам инбридинга, или близкородственного скрещивания, приводящего к гомозиготности. Увеличение жизнеспособности гибридов первого поколения в результате гетерозиса связывают с переходом генов в гетерозиготное состояние, приэтом рецессивные летальные и полулетальные аллели, снижающие жизнеспособность гибридов, не проявляются. Также в результате гетерозиготации могут образовываться несколько аллельных вариантов фермента, действующих в сумме более эффективно, чем поодиночке (в гомозиготном состоянии). Механизм действия гетерозиса ещё не окончательно выяснен. Явление гетерозиса зависит от степени родства между родительскими особями: чем более отдалёнными родственниками являются родительские особи, тем в большей степени проявляется эффект гетерозиса у гибридов первого поколения.

Явление гетерозиса наблюдалось ещё до открытия законов Менделя И. Г. Кёльрейтером, термин «гетерозис» (в переводе с греческого языка — изменение, превращение), в 1908 Г. Шулл описал гетерозис у кукурузы.

У растений (по А. Густафсону) выделяют три формы гетерозиса: т. н. репродуктивный гетерозис, в результате которого повышается плодородность гибридов и урожайность, соматический гетерозис, увеличивающий линейные размеры гибридного растения и его массу, и приспособительный гетерозис (называемый также адаптивным), повышающий приспособленность гибридов к действию неблагоприятных факторов окружающей среды.

Анализ эффекта гетерозиса с позиций открытых в начале XX в. основных генетических закономерностей гетерозиса:

1) гетерозиготным состоянием гибридов по многим генам;

2) возникновением взаимодействия доминантных благоприят­ных генов; 3) сверхдоминированием — гетерозигота превосхо­дит гомозиготу. В доказательство первого положения приво­дятся примеры получения межлинейных гибридов. При скрещи­вании гомозиготных инбредных линий гибриды первого поколе­ния гетерозиготны по многим генам. При этом действие вредных рецессивных мутантных аллелей подавляется доминантными аллелями обоих родителей.

Большой хозяйственный интерес представляют пути закреп­ления гетерозиса у древесных растений. Сохранение эффекта гетерозиса осуществляется вегетативным размножением уни­кальных гибридов. Мы живем в век невиданных темпов научно-технического прогресса, обусловленного интенсивным развитием и огром­ными достижениями современной науки. Среди наук, опре­деляющих научно-технический прогресс, наряду с физикой, химией, электроникой и другими науками, все большее зна­чение приобретают биологические, в особенности молекуляр­ная биология, включающая молекулярную генетику и био­химию. Эти науки за последние 30 лет достигли выдающих­ся результатов в познании живого.

ГЕНЕТИКА ПОПУЛЯЦИЙ

Все виды живых организмов на Земле представлены определенными группами особей, которые называются популяциями. Популяция — это элементарная единица эволюции. Действительно, вид, занимающий часто огромный ареал, содержащий многообразие форм, различных в каждом географическом районе, оказывается слишком громоздкой системой для однозначного ответа на действие естественного отбора, имеющего различные направления, характер и силу в разных районах. В то же время отдельный организм (особь) также не может быть единицей эволюции, так как содержит лишь незначительную часть генетической информации вида, а с его смертью утрачивается и эта доля информации. Таким образом, единицей эволюции может быть только достаточно большая группа особей вида, которая будет репрезентативной (представительной) и в то же время достаточно малой, чтобы быть подвижной системой, чутко реагирующей, на воздействие естественного отбора. Такой группой особей оказалась популяция.

Впервые термин популяция был предложен 3. Л. Иоганнсеном 1907 г. в работе «Чистые линии и популяции». В его трактовке популяция — это группа особей, отличающихся от чистой линии тем, что каждый признак в ней представлен многими аллелями основного, определяющего его гена. В чистой линии признак представлен моноаллельно. Другими словами, гетерозиготность признака отличает популяцию от гомозиготности его в чистой линии.

Современный этап экспериментального изучения популяции начался с выхода в 1926 г. работы С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики». Учение о популяциях как раздел общей биологии еще только развивается и не достигло уровня законченного исследования. Однако значение этого раздела трудно переоценить, так как учение о популяциях имеет прикладное значение. Учение о популяциях включает вопросы: динамики численности вида, микроэволюционных процессов и пусковых механизмов в эволюции, систематики и таксономии и, наконец, что особенно важно для лесоводства, вопросы, связанные с изучением генетики объектов, обычный генетический анализ которых сильно затруднен.

 

24.

Структура популяций

Показатели структуры популяций. Как первая надорганизмен-ная биологическая система, популяция обладает определенной структурой и свойствами. Структуру популяции отражают такие ее показатели, как численность и распределение особей в пространстве, соотношение групп по полу и возрасту, их морфологические, поведенческие и другие особенности.

Численность — общее количество особей в популяции. Если рождаемость перестанет покрывать естественную убыль, и оставшиеся особи в течение сравнительно короткого времени вымрут.

Плотность — число особей на единицу площади или объема. При увеличении численности плотность популяции, как правило, возрастает; она остается прежней лишь в случае ее расселения и расширения ареала.

Пространственная структура популяции характеризуется особенностями размещения особей на занимаемой территории. Она определяется свойствами местообитания и биологическими особенностями вида. Наряду со случайным и равномерным распределением в природе наиболее часто встречается групповое распределение.

Половая структура отражает определенное соотношение мужских и женских особей в популяции.

Возрастная структура отражает соотношение различных возрастных групп в популяциях, зависящее от продолжительности жизни, времени наступления половой зрелости, числа потомков в помете, количества потомств за сезон и др. Если какая-либо возрастная группа сокращается либо увеличивается, это сказывается на общей численности популяции.

Экологическая структура свидетельствует об отношении различных групп организмов к условиям окружающей среды.

Внутривидовой полиморфизм обусловливает уникальность сочетания аллелей у разных особей. Причиной полиморфизма служат половое размножение, которое обеспечивает комбинативную изменчивость, и мутации, изменяющие субстрат наследственности. Поддержание внутривидового полиморфизма обеспечивает устойчивость вида и гарантирует его существование в различных условиях среды.

Полиморфи́зм в биологии — способность некоторых организмов существовать в состояниях с различной внутренней структурой или в разных внешних формах.

Внешний (а также внутренний, например, биохимический) полиморфизм может быть обусловлен внутривидовыми генетическими различиями. С другой стороны, возможен полиморфизм, при котором организмы с практически идентичным геномом в зависимости от внешних условий приобретают различные фенотипические формы.

 

27.

Харди — Вайнберга закон, закон популяционной генетики, устанавливающий соотношение между частотами генов и генотипов в популяции со свободным скрещиванием. Сформулирован в 1908 независимо английским математиком Г. Харди и немецким врачом В. Вайнбергом. Закон утверждает, что если численность популяции диплоидных организмов настолько велика, что можно пренебречь случайными флуктуациями частот генов ), если в ней отсутствуют мутации, миграция и отбор (по изучаемому гену), то частоты генотипов AA, Aa и aa в популяции остаются одинаковыми из поколения в поколение (после первого) и удовлетворяют соотношениям Харди ‒ Вайнберга:p2(AA): 2pq (Aa): q2(aa), где А и а ‒ аллели несцепленного с полом гена, p ‒ частота аллеля А,q ‒ частота аллеля а. Х. ‒ В. з. распространяется и на случай многоаллельного гена. В популяциях полиплоидных организмов (а также в популяциях диплоидов ‒ для генов, сцепленных с полом) соответствующие соотношения устанавливаются лишь через большое число поколений. Если в популяции выполняются соотношения Х. ‒ В. з., то это не свидетельствует ещё об отсутствии популяционно-генетических процессов. Например, скрещивание близкородственных особей (инбридинг), способствующее увеличению доли гомозигот в популяции, в сочетании с отбором против гомозигот может привести к частотам генотипов, удовлетворяющим соотношениям Х. ‒ В. з. Сопоставление фактически наблюдаемых частот генотипов с теоретически ожидаемыми по Х. ‒ В. з. в ряде случаев позволяет оценить частоты аллелей, вычленить влияющие на них факторы и получить количественные характеристики отбора, неслучайности скрещивания, миграции, случайных флуктуаций и т.п. Представление о генетическом равновесии в популяциях, впервые нашедшем выражение в Х. ‒ В. з., составляет основу современной концепции о взаимодействии популяционно-генетических процессов.

 

28.

Генная инженерия — понятие более узкое, чем генетиче­ская инженерия, и имеет отношение только к отдельному гену или генам. В ее задачу входят выделение, конструиро­вание и клонирование новых рекомбинантных генов, или молекул ДНК, создание банков генов. В то же время гене­тическая инженерия — более широкое понятие. Она изучает проблемы направленного конструирования с помощью мето­дов генной инженерии новых живых существ с заданными наследственными признаками и свойствами.

Техника выращивания в искусственных условиях клеток высших организмов резко расширила возмож­ности генетической инженерии растений и животных, по­скольку клетки, и в особенности «голые» клетки растений (протопласты), являются удобными реципиентами для вве­дения чужеродного генетического материала.

Вместе с тем культивирование клеток и тканей в про­бирках приобрело самостоятельное практическое значение. Оказалось, что в процессе культивирования с клетками мож­но осуществлять различного рода манипуляции, в резуль­тате которых можно получать клетки, а у растений даже целые организмы с новыми наследственными свойствами (гибриды), клетки, способные продуцировать, в огромных количествах важные для человека вещества, моноклональ-ные антитела, размножать (клонировать) ценные генотипы и т. д. Это направление биологии получило название кле­точной инженерии. Генетическая и клеточная инженерия направлены на ре­шение общей задачи — осуществление контролируемых био­логических манипуляций, связанных с генами, хромосомами, геномами, клетками, протопластами и органеллами клеток с целью создания новых генетических программ (геноти­пов).

Генетическая инженерия — наука совсем молодая. Фор­мально датой ее рождения считают 1972 год, когда амери­канский ученый профессор Берг с сотрудниками создали первую химерную (гибридную) молекулу ДНК.

29.

Генофонд лесных древесных пород и его сохранение.

Для успешного долговременного селекционного улучшения лесных древесных пород необходимо иметь широкую генетическую базу или значительный генофонд, поэтому очень важно заботиться о сохранении уже существующего генетического потенциала популяций. В любой селекционной программе необходимо предусматривать консервацию генов и генных комплексов, при этом необходимо не допускать сужение генетической базы или возникновения эффекта инбредной депрессии.

консервация генов имеет большое значение и его общая цель – сохранение.

Изучите методы консервирования генетических ресурсов:

- консервация генофонда in situ;

- консервация ex situ;

Консервация in situ, или консервация деревьев и насаждений в естественных популяциях, т. е. в местах их извечного проживания.

Консервация ex situ, или сохранение генов, генных комплексов или генотипов в искусственных условиях, т. е. не в месте их естественного проживания.

Следует также заметить, что одни группы растении могут сохраняться только in situ, другие — только ex situ, третьи — обоими методами.

- консервация географических происхождений, экотипов и популяций;

- консервация признаков отдельных деревьев.

Изучите формы выделения и сохранения ценного генофонда лесных древесных пород в России:

- лесные генетические резерваты;

- отбор и сохранение отдельных ценным насаждений и деревьев.

Имейте представление о мировой политике в области сохранения биоразнообразия и консервации генофонда.

Генофонд — это совокупность генов одной популяции, в пределах которой они характеризуются определенной частотой встречаемости. целью селекции является использование существующей изменчивости для получения большего числа деревьев с желательными характеристиками роста, качества или устойчивости. При этом генетичес­кая база обычно ограничивается или сужается для хозяйственно важных характеристик. В начале любой генетико-селекционной программы, особенно ориентированной на отбор, а также в начале любой хозяйственной деятельности, которая ведет к изменениям в составе гено­фонда, необходимо позаботиться о сохранении уже существующего гене­тического потенциала популяций..

Причины потерь генетических ресурсов могут быть самыми разными, например: инвазия насекомых, эпизоотия, вырубка, очистка для сельскохо­зяйственного пользования, экспансия городов, пожары, штормы и др. Лю­бое действие, которое разрушает леса или часть леса, может вести к опас­ной в генетическом отношении ситуации. Особенно эта ситуация пагубна для популяций с ограниченным ареалом. Значительна опасность исчезновения генофонда в экстремальных ус­ловиях, в которых изведение лесов не компенсируется их восстановлени­ем. К тяжелым последствиям ведет не только полное исчезновение вида, но и просто истощение его генетического потенциала, так как в этом слу­чае возможна потеря устойчивости и наиболее ценных комплексов генов.

31.

Селе́кция —отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. Лесная (от лат. selectio - выбор отбор), наука о методах отбора в естественных популяциях или искусственного получения форм и сортов древесных и кустарниковых растений, имеющих хозяйственную ценность. Селекция как наука оформилась лишь в последние десятилетия. В прошлом она была больше искусством, чем наукой. Селекция разрабатывает способы воздействия на растения и животных с целью изменения их наследственных качеств в нужном для человека направлении.

История:Первоначально в основе селекции лежал искусственный отбор, когда человек отбирает растения или животных с интересующими его признаками. До XVI—XVII веков отбор происходил бессознательно. Только в последнее столетие человек, еще не зная законов генетики, стал использовать отбор сознательно или целенаправленно, скрещивая те растения, которые удовлетворяли его в наибольшей степени. История включает 3 периода: додарвинский, дарвинский, современный. Додарвинский период в истории развития практической селекции включает в свою очередь этапы примитивной, народной и промышленной селекции. Примитивная селекция у древних народов развивалась очень медленно, ее успехи носили случайный характер. В эпоху неолита, т.е. за 10000 лет до н.э., люди уже возделывали многие растения. Дикие виды растений вводились в культуру путем отбора лучших форм растений. В конце XVIII — начале XIX вв. с развитием производительных сил общества возникает промышленная селекция. Выведение новых пород животных и сортов растений, проводившееся в широких масштабах многими заводами и фирмами, приняло промышленный характер. В результате Ч. Дарвин создал теорию селекции — учение об искусственном отборе. Историческое значение достижений практической селекции заключалось в накоплении ценного фактического материала, позволившего ему открыть творческий характер искусственного отбора в эволюции культурных растений. Изменчивость, наследственность и отбор были названы им факторами — предпосылками селекции. Учение об изменчивости живых форм становится предметом науки. С 1900 г начался современный этап. Генетика оформилась как самостоятельная наука.

 

32.

Селекция лесная является частью селекции - прикладного раздела генетики, который разрабатывает теорию, методы создания и совершенствования сортов растений. Основные этапы лесной селекции: 1) изучение сортового и видового разнообразия древесных растений, являющихся объектами селекционной работы; 2) анализ закономерностей наследования при гибридизации и мутационном процессе, основанный на данных частной генетики; 3) исследование роли среды в развитии признаков и свойств селектируемых видов; 4) разработка систем искусственного отбора, способствующих закреплению и усилению желательных признаков. Лесная селекция является базой для развития лесного семеноводства на генетико-селекционной основе. Селекцию древесных растений проводят на повышение продуктивности, улучшение качественных показателей растений и усиление устойчивости (к патогенам насекомым - вредителям леса).

 

33.

Задачи современной селекции вытекают из ее определения — это выведение новых и совершенствование уже существующих сортов растений, пород животныхимикроорганизмов. Сортом, породой называют устойчивую группу (популяцию) живых организмов, искусственно созданную человеком и имеющую определенные наследственные особенности.

Цель селекции заключаются в изучении изменчивости и наследственности хозяйственно-ценных признаков и кустарников. Селекцию древесных растений проводят на повышение продуктивности, улучшение качественных показателей растений и усиление устойчивости (к патогенам насекомым - вредителям леса). Задача этой науки заключается в разработке селекционно-генетических методов повышения продуктивности и улучшения качества создаваемых лесов. Основные методы селекции лесной - искусственный мутагенез, отбор (массовый, индивидуальный, групповой) и гибридизация, основанными на достижениях генетики: методом выведения самоопыленных линий и последующего получения линейных гибридов, методом экспериментальной полиплоидии, методом экспериментального мутагенеза.

34.

Географическая изменчивость

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Ненаследственная изменчивость — КиберПедия

Ненаследственная изменчивость, модификационная, или фенотипическая – это изменчивость, возникающая у организмов под влиянием условий среды, не связанная с изменением генотипа и приводящая к возникновению разнообразных фенотипов. Изменения фенотипа являются результатом реакции организма на изменяющиеся факторы среды, не выходят за пределы нормы реакции и ограничены ею. Нормой реакции называют пределы модификационной изменчивости признака. Одни признаки (например, молочность) обладают очень широкой нормой реакции, другие (окраска шерсти) – гораздо более узкой.

Рассмотрим примеры модификационной изменчивости. Если зерна пшеницы посадить в хорошо удобренную почву, то выросшие растения дадут крупные колосья и хороший урожай зерна. Если двух овец одного помета содержать в разных условиях, то они по-разному будут прибавлять в массе, у них может отличаться качество шерсти.

Один из сортов примулы при температуре 18-20 °С имеет красные цветки. Но если в период бутонизации поместить растение в теплицу с температурой 30-35 °С, то после распускания бутонов цветки окажутся белыми. Если же растение вновь поместить в обычные условия, то вновь распускающиеся цветки будут иметь красную окраску. Аналогичный эксперимент, проведенный с сортом примулы, имеющим белые цветки, не даст такого результата: во всех условиях цветки будут иметь только белую окраску. Это связано с тем, что в их генотипе отсутствуют гены красной окраски. Следовательно, для проявления доминантного признака красной окраски необходимы определенные температурные условия. Очевидно, что наследуется не признак, а норма реакции признака (способность организма реагировать на условия внешней среды).

Еще одним примером модификационной изменчивости является изменение окраски шерсти у зайца в зависимости от температуры. Зимой при низких температурах у зайца вырастает белая шерсть, т. е. пигмент не развивается. Весной при повышении температуры пигмент вновь вырабатывается, и шерсть становится серой. Такая изменчивость является приспособительной, что позволяет зайцам быть незаметными соответственно на фоне белого снега или грязно-серой земли.

Модификационная изменчивость имеет следующие особенности.

1. Изменения не наследуются и носят фенотипический характер. Все изменения, которые возникают у организма в процессе индивидуального развития, не затрагивают генотип, поэтому не передаются по наследству.

2. Изменения проявляются у многих особей в популяции, т. е. носят массовый характер (если все стадо коров содержать в хороших условиях, то у них увели­чиваются надои молока).

3. Изменения носят постепенный характер (серая шерсть у зайцев зимой заменяется на белую постепенно. Надои молока у коров при хорошем уходе повышаются постепенно).

4. Изменения адекватны условиям среды и являются приспособительными. Они способствуют выживанию особей, повышают жизнестойкость и приводят к образованию модификаций.

Наследственная изменчивость

В отличие от модификационной изменчивости наследственная изменчи­вость затрагивает генотип и передается по наследству. Различают две формы наследственной (или генотипической) изменчивости – комбинативную и мутационную.

Комбинативная изменчивость – это появление новых сочетаний признаков вследствие перекомбинации генов. Часто у потомков появляются такие сочетания признаков, которые не были характерны для родителей. Например, появление зеленого и гладкого гороха при скрещивании гетерозиготных особей гороха с гладкими желтыми семенами есть результат комбинации признаков. Примером комбинации является проявле­ние признаков у потомков при комплементарном взаимодействии генов (признак появляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов (ААbb – белые цветки гороха одного сорта, ааВВ – белые цветы гороха другого сорта, а при их скрещивании появляются АаВb – пурпурные цветки)) – и эпистазе (ген одной аллельной пары подавляет действие гена другой пары (например, ген С в доминантной форме определяет окрашенное оперение кур, но аллель другого доминантного гена I является его супрессором, в результате куры с генотипом ССII будут белыми, а не окрашенными)).

Основой комбинативной изменчивости являются следующие факторы:

1) случайная комбинация негомологичных хромосом в мейозе и, как следствие, независимое наследование признаков;

2) рекомбинация генов в результате кроссинговера в процессе мейоза;

3) половой процесс, приводящий к сочетанию отцовских и материнских генов.

Комбинативная изменчивость определяет разнообразие особей и необходима для вида в его приспособлении к условиям среды. Наличие комбинаций способствует появлению особей со специфически­ми признаками, которые используются при выведении новых сортов растений и пород животных.

Мутационная изменчивость. Генотип любого организма подвергается воздействию внешней среды. Иногда такие воздействия могут вызвать изменения, «ошибки» в структуре хромосом или генов. В результате возникает новый признак – мутация – изменения наследственного аппарата клетки, при которых изме­няется структура гена или хромосомы. Понятие мутаций было введено в биологию голландским ученым де Фризом. Он наблюдал появление некоторых признаков у растения энотеры (ослинника), которые резко отличались от исходной формы. Были получены карликовые формы, растения с широкими листьями, с красными жилками и другие. Все признаки оказались наследственными. Последующие исследования показали, что подобные наследственные изменения свойственны всем организмам. В отличие от модификаций мутации наследуются и связаны с изменением генотипа.

Мутационная изменчивость – это наследственные изменения генотипического материала хромосом и генов. Под воздействием различных факторов, а иногда и произвольно могут возникнуть ошибки в репликации ДНК, копировании хромосом, нарушения в процессе деления клетки. Например, у дрозофилы в процессе мутации в гене не развиваются крылья и возникают бескрылые особи. Иногда при воздействии химических агентов или при механических повреждениях у растений ядро клеток может делиться быстрее, чем сама клетка. В результате возникают клетки с удвоенным набором хромосом, которые могут дать начало цветкам и семенам с другим генотипом. Облучение зерен пшеницы перед посевом рентгеновскими лучами приводит в одном случае к образованию неполноценных колосьев, в другом – к отсутствию сформированного колоса, в третьем – к формированию более крупного полноценного колоса. Воздействие одних и тех же условий вызывает разную реакцию у организма.

Виды и роды, генетически близкие, характеризуются сходными рядами в наследственной изменчивости. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов. Этот постулат известен как закон гомологических рядов наследственной изменчивости Н.И. Вавилова.

В основе любых мутаций лежит появление новых типов белков, которые обусловливают появление новых признаков.

Мутационная изменчивость имеет ряд характерных особенностей.

1. Изменения затрагивают генотип и наследуются.

2. Изменения носят скачкообразный характер. Не наблюдается последовательности в изменении свойств, модификации отсутствуют.

3. Изменения индивидуальны и возникают у единичных особей в популяции.

4. Изменения не адекватны условиям среды, т. е. носят независимый характер и могут быть нейтральными, полезными, но чаще всего вредными.

5. Мутации могут привести к образованию новых признаков, популяций или гибели организма. Например, мутация окраски глаз у дрозофил привела к образованию новой популяции белоглазых мух.

Виды мутаций

1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими. Например, при биохимических мутациях изменению подвергаются белки-ферменты, которые могут ускорить синтез определенных белков, а в некоторых случаях, наоборот, прекратить синтез белков. Например, альбинизм – мутация, связанная с отсутствием в организме фермента, ответственного за синтез пигмента меланина. При анатомо-морфологических мутациях наблюдаются аномалии в формировании ор­ганов или систем органов. Например, недоразвитие желудка у серых каракулевых овец, гомозиготных по доминантному гену серой окраски.

2. По степени влияния на приспособленность орга­низма мутации делятся на полезные и вредные. Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Вредные мутации понижают жизнеспособность особей, иногда могут быть летальными и вызывать гибель организма еще в эмбриональном периоде. Мутация всегда изменяет приспособленность. Например, бескрылые дрозофилы не способны летать в поисках корма, что резко снижает их приспособленность и приводит к гибели. Степень полезности или бесполезности мутации выясняется со временем. Если мутация позволяет организму лучше приспособиться, дает новый шанс для выживания, то она подхватывается естественным отбором и закрепляется в популяции. Примером может служить такая мутация у человека, которая выражается в серповидно-клеточной анемии. При наличии такой мутации возникают нарушения в структуре гемоглобина, что приводит к образованию эритроцитов серповидной формы. Такие эритроциты не способны транспортировать достаточное количество кислорода, организм испытывает кислородное голодание и, в конце концов, погибает. Однако у гетерозигот по этому признаку эритроциты лишь слегка изменены, организм вполне жизнеспособен, но у них появляется одна особенность – они устойчивы к заболеванию малярией. В измененных эритроцитах не способен размножаться малярийный плазмодий. В результате при массовом заболевании малярией гомозиготы с нормальными эритроцитами могут погибнуть, тогда как гетерозиготы выживают. В африканской популяции человека гетерозиготы по данному признаку встречаются чаще, чем в других местах земного шара. Однако и заболевание серповидно-клеточной анемией там встречается чаще.

Другим примером является изменение окраски крыльев у бабочки березовой пяденицы. Березовая пяденица в норме имеет светлую окраску крыльев, что является хорошей маскировкой на фоне светлого ствола березы. Особи с мутантной темной окраской крыльев хорошо заметны на стволах березы. Этот признак не защищает их от поедания птицами. Однако в условиях города, где повышена копоть в воздухе, дома и деревья имеют серую окраску, такая мутация делает особи ме­нее заметными и оказывается полезной. В городе в основном преобладают особи с серой окраской, а в сельской местности – с белой окраской.

3. Мутации бывают прямые и обратные. В результате действия каких-либо факторов в определенном гене произошла мутация нормального признака. Это прямая мутация, обычно связанная с дефектом функции гена. Если следующая мутация возникнет в той же точке, то признак вернется в исходное, нормальное состояние. Это обратная мутация, что встречается гораздо реже. Ве­роятность вторичной мутации в той же точке очень мала, чаще всего мутациям подвергаются другие гены.

Большинство мутаций рецессивные, поэтому они скрыты и лишь изредка проявляются в популяциях только в гомозиготном состоянии. Доминантные мутации встречаются реже, они проявляются сразу же и в случае летальности быстро отбрасываются отбором.

4. По способу возникновения различают спонтанные и индуцированные мутации. Спонтанные мутации происходят в природе независимо от человека и проявляются крайне редко. Они зависят как от внутренних, так и от внешних факторов. Индуцированные мутации возникают при воздействии на организмы специальных факторов, вызывающих мутации, мутагенов. Это физические (радиация, электромагнитное излучение, давление, температура и т. д.), химические (органические соединения, лекарственные препараты, гербициды и т. д.), биологические факторы (бактерии и вирусы).

5. По локализации в клетке мутации бывают ядерными и цитоплазматическими. Ядерные мутации связаны с аномалиями в хромосомном аппарате ядер и передаются по наследству. Цитоплазматические мутации связаны с нарушением ДНК в таких структурах цитоплазмы, как хлоропласты и митохондрии. Так как эти органоиды сохраняются только в яйцеклетках, то цитоплазматическая мутация передается по материнской линии. Например, ДНК пластид растений управляет образованием пигмента хлорофилла, который обеспечивает развитие зеленой окраски. Решающим для окраски листа потомков является содержание пластид в богатых плазмой яйцеклетках, а не в клетках пыльцы. Митохондриальная ДНК регулирует синтез дыхательных ферментов. Их нарушение проявляется по материнской линии, так как митохондрии содержатся в большом количестве в цитоплазме яйцеклетки, сперматозоиды при оплодотворении передают в яйцо только ядро.

6. По типам клеток, в которых возникают мутации, они делятся на половые и соматические. Если изменения связаны с хромосомами в половых клетках, то они проявляются в последующих поколениях, которые образуются при половом размножении. Но мутации могут происходить и в соматических клетках. В этом случае они называются соматическими и по наследству при половом размножении не передаются. Примером соматической мутации является нарушение пигментации глаза у дрозофилы. У человека иногда появление белой пряди волос на голове связано с соматической мутацией – нарушением образования пигмента. Эта мутация появляется не сразу, а в процессе жизни. Однако аналогичная мутация белой пряди волос встречается и как половая, передается по наследству и проявляется сразу при рождении.

У растений соматические мутации передаются по наследству при вегетативном размножении.

7. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

Генные мутации. Все мутации так или иначе связаны с изменениями генотипа. Они затрагивают хромосомный аппарат клетки. Наиболее часто мутации происходят в самих генах и не связаны с изменениями внешней структуры хромосом. Качественные перестройки отдельных генов, связанные с изменениями в структуре молекулы ДНК, называются генными мутациями.

В результате генных мутаций происходят изменения в единичных нуклеотидах в составе ДНК, поэтому мутации иначе называются точковыми. Они приводят к образованию аномального гена, а, следовательно, и аномальной структуры белка, что вызывает развитие аномального признака.

Генная мутация – это результат ошибки при репликации ДНК. Эти ошибки могут быть различными. В случаях добавления лишнего нуклеотида или выпаде­ния одного нуклеотида сдвигается рамка считывания кода и может измениться вся последующая структура гена, что приведет к изменению всей структуры белка, и возникнет совершенно новый белок, а значит, и признак. При замене одного нуклеотида на другой структура гена в целом меняется мало, а в белке может одна аминокислота замениться на другую. В этом случае возникает новая модификация белковой молекулы.

Результатом генной мутации у человека являются такие заболевания, как серповидно-клеточная анемия, фенилкетонурия, дальтонизм, гемофилия, альбинизм. В частности, при серповидно-клеточной анемии происходит замена одного нуклеотида, в результате чего в одной цепи гемоглобина вместо глутамина становится валин. Это, казалось бы, ничтожное изменение, но оно приводит к деформации эритроцитов, которые приобретают форму серпа и уже не способны транспортировать кислород.

Вследствие генной мутации возникают новые аллели генов, что имеет значение для возникновения нового признака и эволюционного процесса.

Хромосомные мутации – это изменения структуры, размеров хромосом, которые иначе называются хромосомными перестройками или аберрациями. Изменения структуры хромосом затрагивают сразу ряд генов. Хромосомные мутации можно наблюдать в световой микроскоп, так как изменяется вид хромосомы.

Известны различные виды перестроек.

1. Делеция - потеря участка хромосомы в результате отрыва ее части, при этом сохраняется ее центромера, однако теряется часть генов.

A B C D E FA B C D E

Примером хромосомной мутации у человека является делеция в коротком плече 5-й хромосомы, в результате возникает синдром «кошачьего крика». Плач ребенка напоминает мяуканье кошки, при этом наблюдаются сращение пальцев, нарушения центральной нервной системы.

2. Транслокация - межхромосомная перестройка, связанная с переносом части хромосом на другую негомологичную хромосому, результатом является изменение группы сцепления генов.

A B C D E FA B C D

К L M NK L M N E F

3. Инверсия - поворот участка хромосомы на 180°, при этом меняется последовательность сцепления генов.

A B C D E FA B C F E D

4. Дупликация - удвоение ге­нов в определенном участке хромосомы, при котором один участок хромосомы представлен более одного раза.

A B C D E FA B C D E F F

Хромосомные мутации чаще всего приводят к изменению функционирования генов, что является причиной патологических нарушений в организме. Но они играют существенную роль в эволюции вида. Предполагается, что в процессе эволюции произошла, по крайней мере, одна перестройка: два плеча 2-й хро­мосомы человека соответствуют 12-й и 13-й хромосомам шимпанзе и 13-й и 14-й хромосомам гориллы и орангутана. Исследования показали, что 4, 5, 12 и 17-е хромосомы человека и шимпанзе отличаются инвер­сиями.

Геномные мутации – количественные изменения числа хромосом в клетке за счет появления лишней или утраты хромосомы. Геномные мутации являются результатом нарушения в мейозе веретена деления и нерасхождения хромосом. Встречаются два вида таких мутаций: анэуплоидия и полиплоидия.

1. Анэуплоидия – (гетероплоидия) возникает вследствие изменения числа хромосом, некратного гаплоидному набору. Причиной изменения числа хромосом является нерасхождение хромосом при гаметогенезе. В результате появляются гаметы, в которых некоторые хромосомы либо отсутствуют, либо представлены в двойном количестве. Примером анэуплоидии является трисомия по 21-ой паре хромосом, известная как синдром Дауна.

2. Полиплоидия – характеризуется увлечением числа геномов (гаплоидных наборов хромосом) и может выражаться в образовании триплоидных (3n), тетраплоидных (4n) и других форм. К полиплоидии могут привести следующие процессы: нарушения мейоза, вызывающие образование гамет с нередуцированным числом хромосом, слияние соматических клеток или их ядер, удвоение числа хромосом без последующего деления клеток. Полиплоидию широко применяют в сельском хозяйстве.

cyberpedia.su

Формы изменчивости

Изменчивость – это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

ТАБЛИЦА Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Формы изменчивости Причины появления Значение Примеры
Ненаследственная модификационная (фенотипическая) Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом Адаптация – приспособление к данным условиям среды, выживание, сохранение потомства Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми
Наследственная (генотипическая)Мутационная Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные Появление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов – микроэволюции
Наследственная (генотипическая)Комбинатнвная Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов Распространение в популяции новых наследственных изменений, которые служат материалом для отбора Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
Наследственная (генотипическая)Соотносительная (коррелятивная) Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков Постоянство взаимосвязанных признаков, целостность организма как системы Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак – жирность молока – слабо подвержен изменениям условий среды, а масть животного – еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции.

Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции – жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др.

Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, т. е. характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.

Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменчивости генотипом.

Генотипическая изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Термин «мутация» был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Классификация мутаций. Мутации можно объединять, в группы – классифицировать по характеру проявления, по месту или, по уровню их возникновения.

Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью – летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа (изменение числа хромосом).. Полиплоидия – увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды пблучают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена.

Гетероплоидия – изменение числа Хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека с синдромом Дауна оказывается одна лишняя хромосома по 21-й паре и кариотип такого человека составляет 47 хромосом У людей с синдромом Шерешевского – Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т. д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот, так и. у гетерозигот, вторые – только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

Свойства мутаций:

1. Мутации возникают внезапно, скачкообразно. 2. Мутации наследственны, т. е. стойко передаются из поколения в поколение. 3. Мутации ненаправденны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков. 4. Одни и те же мутации могут возникать повторно. 5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию – одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Комбинативная изменчивость

Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают: 1) при кроссинговере, во время профазы первого мейотического деления; 2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления; 3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления и 4) при слиянии разных половых клеток. Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.

В селекции важное значение имеет закон гомблогических рядов наследственной изменчивости, сформулированный советским ученым Н. И. Вавиловым. Он гласит: внутри разных видов и родов, генетически близких (т. е. имеющих единое происхождение), наблюдаются сходные ряды наследственной изменчивости. Такой характер изменчивости выявлен у многих злаков (рис, пшеница, овес, просо и др.), у которых сходно варьируют окраска и консистенция зерна, холодостойкость и иные качества. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных видов и, воздействуя на них мутагенами, вызывать у них подобные полезные изменения, что значительно облегчает получение хозяйственно ценных форм. Известны многие примеры гомологической изменчивости и у человека; например, альбинизм (дефект синтеза клетками красящего вещества) обнаружен у европейцев, негров и индейцев; среди млекопитающих – у грызунов, хищных, приматов; малорослые темнокожие люди – пигмеи – встречаются в тропических лесах экваториальной Африки, на Филиппинских островах и в джунглях полуострова Малакки; некоторые наследственные дефекты и уродства, присущие человеку, отмечены и у животных. Таких животных используют в качестве модели для изучения аналогичных дефектов у человека. Например, катаракта глаза бывает у мыши, крысы, собаки, лошади; гемофилия – у мыши и кошки, диабет – у крысы; врожденная глухота – у морской свинки, мыши, собаки; заячья губа – у мыши, собаки, свиньи и т. д. Эти наследственные дефекты – убедительное подтверждение закона гомологических рядов наследственной изменчивости Н. И. Вавилова.

Таблица . Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Характеристика Модификационная изменчивость Мутационная изменчивость
Объект изменения Фенотип в пределах нормы реакции Генотип
Отбирающий фактор Изменение условий окружающей среды Изменение условий окружающей среды
Наследование при знаков Не наследуются Наследуются
Подверженность изменениям хромосом Не подвергаются Подвергаются при хромосомной мутации
Подверженность изменениям молекул ДНК Не подвергаются Подвергаются в случае генной мутации
Значение для особи Повышает или понижает жизнеспособность. продуктивность, адаптацию Полезные изменения приводят к победе в борьбе за существование, вредные – к гибели
Значение для вида Способствует выживанию Приводит к образованию новых популяций, видов и т. д. в результате дивергенции
Роль в эволюции Приспособление организмов к условиям среды Материал для естественного отбора
Форма изменчивости Определенная (групповая) Неопределенная (индивидуальная), комбинативная
Подчиненность закономерности Статистическая закономерность вариационных рядов Закон гомологических рядов наследственной изменчивости

www.examen.ru