Лекарственные растения и травы

Меню сайта

Методы микроклонального размножения20.04.2015Научные статьимикроклональное размножение2240. Микроклонирование растений для чайников


Факторы, влияющие на процесс клонального микроразмножения

На эффективность микроклонального размножения влияет масса факторов различной природы. Это физиологические особенности вводимого в культуру растения, химические и физические условия культивирования.

Наиболее важным моментом является выбор материнского растения и экспланта.

При выборе материнского растения необходимо учитывать его физиологические, сортовые и видовые особенности. Исходные растения должны быть здоровы, не поражены грибными, бактериальными и вирусными болезнями. Кроме того, они должны находится в состоянии интенсивного роста (выход из фазы покоя и переход к активному росту). Луковицы, корневища и клубни в состоянии покоя непригодны, перед введением в культуру их предварительно обрабатывают высокими или низкими температурами. Способность к размножению также детерминирована генетически. Например, земляника размножается всеми способами, облепиха – ни одним, хотя в природе черенкуется. Двудольные обладают большей регенерационной способностью, чем однодольные и древесные.

При выборе экспланта необходимо учитывать его возраст, строение и происхождение. Для обеспечения максимальной стабильности клонируемого материала, во избежание появления аномальных растений в качестве экспланта желательно использовать молодые, слабодифференцированные ткани. Кроме того, экспланты от ювенильных растений лучше укореняются, чем от зрелых, особенно это касается древесных пород. Лучше всего использовать кончики стеблей, пазушные почки, зародыши, молодые листья, черенки, соцветия, чешую луковиц, то есть экспланты, содержащие меристемы. Опыты с эмбрионами кукурузы, проведенные Грином и Филипсом в 1975 году, показали, что при извлечении эмбрионов из зрелых семян они образуют каллус и корни. Если же изолировать их через 2 – 3 недели после опыления, то образуются и каллус, и растения. Вероятно, это связано с разворачиванием генетической программы в онтогенезе растения. Следует отметить, что не всегда молодые ткани являются удачным объектом для размножения. У эхеверии на эксплантах из молодых листьев возникают только корни, из старых – только побеги, из средних по возрасту – и побеги, и корни. Чем меньше размер экспланта, тем меньше его регенерационная способность. С другой стороны, в крупном экспланте увеличивается возможность появления в его клетках вирусов и других патогенов, что препятствует оздоровлению тканей.

Длительность культивирования также влияет на эффективность микроразмножения. Физиологическое состояние экспланта меняется в течение пассажей, при длительном культивировании частота укореняемости побегов возрастает. Возможно, что при этом эксплант приобретает признаки ювенильности, что ведет к повышению его морфогенетического потенциала.

Успех введения в культуру часто определяется эффективностью стерилизации. Выбор стерилизующего агента определяется особенностями экспланта. Для нежных тканей концентрация стерилизующего агента должна бать снижена, чтобы сохранить жизнеспособность экспланта. Часто внутреннее заражение исходных эксплантов бывает намного сильнее, чем поверхностное, поэтому экспланты предварительно обрабатывают фунгицидами и антибиотиками против грибной и бактериальной инфекций. Хорошие результаты дает обработка растений бензоатом натрия.

В зависимости от вида растений необходимо испытывать как твердые, так и жидкие питательные среды. Иногда жидкие среды имеют преимущество, так как обеспечивают большую подвижность трофических элементов. Например, при размножении роз более успешным было культивирование побегов на двухслойной питательной среде: нижний слой – агаризованный, верхний – жидкий. На эффективность размножения могут также влиять расположение экспланта (горизонтальное или вертикальное), тип пробок (ватные, пластмассовые, стеклянные, металлические и т.д.), а также соотношение объема эксплантов и количества питательной среды для оптимального освещения и газообмена эксплантов.

Состав питательной среды необходимо подбирать для каждого вида растений. На клональное микроразмножение влияют гормоны, минеральные соли, витамины и углеводы. При микроразмножении in vitro часто используют среды Мурасиге и Скуга, Линсмайера и Скуга, Шенка и Хильдебрандта, Нича, Гамборга, Хеллера и другие. Обычно используют среду Мурасиге–Скуга, которая содержит много неорганического азота, что стимулирует процессы органогенеза и соматического эмбриогенеза. В наших экспериментах (Кузьмина Н.А., Внукова В.В., 1997) выход морфогенных каллусов твердой пшеницы был выше на среде Мурасиге-Скуга по сравнению со средой Гамборга, которая одержала окисленные формы азота. Среда Мурасиге-Скуга также способствовала стабилизации хромосомного набора клеток твердой пшеницы при высоком содержании ауксина в среде. Вообще вопрос оптимального соотношения Nh5 : NO3 остается открытым, так как литературные данные весьма противоречивы и универсального рецепта для всех видов растений нет. В качестве источника углеродного питания используют различные углеводы типа сахарозы, глюкозы, фруктозы, галактозы. Разные культуры требуют различной концентрации углеводов на разных этапах клонального микроразмножения.

К физическим факторам выращивания относятся температура и условия освещения. На первых двух этапах освещенность колеблется от 1000 до 3000 Лк, фотопериод 14 – 16 часов, но эти параметры зависят от культуры. Высокая интенсивность света может вызывать хлорозы и задерживать развитие, но при переносе в почву эти растения чувствуют себя лучше и растут энергичнее. Спектральный состав также играет немаловажную роль. Некоторые исследователи (Катаева Н.В., Аветисов В.А, 1981) указывают на синий свет как основной компонент морфогенеза. Красный свет стимулирует образование почек у табака, у салата – образование побегов, у березы – укоренение. В работах Т.Н. Константиновой с соавторами (1987) показано, что синий свет усиливает закладку вегетативных почек у побегов табака в условиях in vitro , а красный стимулирует развитие цветочных почек. Однако при добавлении цитокининов и ауксинов в различной концентрации соотношение процессов дифференциации цветочных и вегетативных почек меняется, в некоторых случаях наблюдается даже противоположный эффект. В исследованиях Р. А. Карначук и Е. С. Гвоздевой (1998) наибольший выход морфогенных каллусов пшеницы, формирующих растения и побеги, отмечен на зеленом свету. Важное значение играет также сочетание спектрального состава света и гормональных факторов среды.

Температура культивирования обычно варьирует в интервале 22 – 26оС днем и 18 – 22оС ночью. В некоторых случаях понижение температуры ведет к повышению эффективности размножения. Для повышения коэффициента размножения необходимо каждому виду с учетом его естественного ареала произрастания подбирать индивидуальные условия культивирования. Относительная влажность воздуха – 65 – 70%.

источник - раздел "Культуры растительных клеток"26 сайта Биотехнология12

microklon.ru

Методы микроклонального размножения

Существует много методов клонального микроразмножения, а также различных их классификаций. Согласно одной из них, предложенной Мурасиге в 1977 году, процесс можно осуществлять следующими путями:

1. Активация пазушных меристем.

2. Образование адвентивных побегов тканями экспланта.

3. Возникновение адвентивных побегов в каллусе.

4. Индукция соматического эмбриогенеза в клетках экспланта.

5. Соматический эмбриогенез в каллусной ткани.

6. Формирование придаточных эмбриоидов в ткани первичных соматических зародышей (деление первичных эмбриоидов).

Н. В. Катаева и Р. Г. Бутенко (1983) выделяют два принципиально различных типа клонального микроразмножения:

1. Активация уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля).

2. Индукция возникновения почек или эмбриоидов de novo :

а) образование адвентивных побегов непосредственно тканями экспланта;

б) индукция соматического эмбриогенеза;

в) дифференциация адвентивных почек в первичной и пересадочной каллусной ткани.

Основной метод, использующийся при клональном микроразмножении растений - активация развития уже существующих в растении меристем. Он основан на снятии апикального доминирования (рис. 1).

Этого можно достичь двумя путями: а) удалением верхушечной меристемы стебля и последующим микрочеренкованием побега in vitro на безгормональной среде; б) добавлением в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин) и зеатин.

Рис. 1. Схема размножения растений методом активации уже существующих меристем (по А. Р. Родину, Е. А. Калашниковой, 1993): 1 – путем удаления верхушечной меристемы: 2 – добавлением цитокининов в среду (б/г – среда без гормонов, Ц – цитокинин, А – ауксин)

Полученные таким образом побеги отделяют от первичного экспланта и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков.

Часто в качестве экспланта используют верхушечные или пазушные почки, которые изолируют из побега и помещают на питательную среду с цитокининами. Образующиеся пучки побегов делят, при необходимости черенкуют и переносят на свежую питательную среду. После нескольких пассажей, добавляя в питательную среду ауксины, побеги укореняют in vitro (рис. 2), а затем переносят в почву, где создают условия, способствующие адаптации растений (рис. 3).

Рис. 2. Образование корней побегами розы при добавлении в питательную среду 2 мг/л 2,4-Д

Рис. 3. Адаптация пробирочных роз к почвенным условиям

Рис. 4. Пробирочная гвоздика

В настоящее время этот метод широко используется в производстве посадочного материала сельскохозяйственных культур, как технических, так и овощных, а также для размножения культур промышленного цветоводства (например, гвоздики, рис. 4), тропических и субтропических растений, плодовых и ягодных культур, древесных растений. Для некоторых культур, таких как картофель, технология клонального размножения поставлена на промышленную основу. Применение метода активации развития существующих меристем позволяет получать из одной меристемы картофеля более 100000 растений в год, причем технология предусматривает получение в пробирках микроклубней - ценного безвирусного семенного материала.

Второй метод - индукция возникновения адвентивных почек непосредственно тканями экспланта. Он основан на способности изолированных частей растения при благоприятных условиях питательной среды восстанавливать недостающие органы и таким образом регенерировать целые растения. Можно добиться образования адвентивных почек почти из любых органов и тканей растения (изолированного зародыша, листа, стебля, семядолей, чешуек и донца луковиц, сегментов корней и зачатков соцветий). Этот процесс происходит на питательных средах, содержащих цитокинины в соотношении с ауксинами 10:1 или 100:1. В качестве ауксина используют ИУК или НУК. Таким способом были размножены многие представители семейства лилейных, томаты, древесные растения (из зрелых и незрелых зародышей).

Достаточно хорошо разработана технология клонального размножения земляники, основанная на культивировании апикальных меристем. Меристематические верхушки изолируют из молодых, свободных от вирусных болезней растений, и выращивают на питательной среде МС, содержащей БАП в концентрации 0,1 - 0,5 мг/л. Через 3 - 4 недели культивирования меристема развивается в проросток, в основании которого формируются адвентивные почки, быстро растущие и дающие начало новым почкам. В течение 6-8 недель образуется конгломерат почек, связанных между собой соединительной тканью и находящихся на разной стадии развития. Появляются листья на коротких черешках, в нижней части которых формируются новые адвентивные почки. Эти почки разделяют и пересаживают на свежую питательную среду. На среде без регуляторов роста за 4 - 5 недель формируются нормальные растения с корнями и листьями. От одного материнского растения таким образом можно получить несколько миллионов растений-регенерантов в год.

Третий метод, практикуемый при клональном микроразмножении, основывается на дифференциации из соматических клеток зародышеподобных структур, которые по своему виду напоминают зиготические зародыши (рис. 5). Этот метод получил название соматического эмбриогенеза. В отличие от развития in vivo, соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят 3 стадии развития: глобулярную, сердцевидную, торпедовидную и в конечном итоге имеют тенденцию развития в проросток. На рисунке 3 показан конечный результат развития – растение пшеницы.

Рис. 5. Соматический эмбриогенез в каллусной ткани

Наиболее впечатляющим применением метода соматического эмбриогенеза стало размножение гвинейской масличной пальмы (Elaeis guineensis), масло которой широко используется при производстве маргарина и пищевого масла. Масличная пальма в природе не образует побегов и боковых ростков, что затрудняет ее вегетативное размножение. Культивирование черенков in vitro также невозможно. Было решено получить скопления клеток недифференцированной ткани (каллусы) путем дедифференцировки специфических тканей, а затем культивировать их до регенерации целых проростков. В первой культуральной среде каллусы из фрагментов листьев развивались в течение 90 дней, при переносе во вторую и третью культуральные среды превращались в "эмбриоиды". Эмбриоиды размножались самопроизвольно, в течение месяца число эмбриоидов возрастало втрое, а за год из 10 эмбрионов можно было получить потомство численностью 500000 растений.

Формирование эмбриоидов в культуре тканей осуществляется в несколько этапов. Сначала происходит дифференциация клеток под влиянием ауксинов, добавленных в питательную среду (2,4-Д) и превращение их в эмбриональные. Получить эмбриоиды из этих клеток можно уменьшая концентрацию ауксинов или исключая их из питательной среды. Соматические зародыши представляют собой полностью сформированные зародыши, из которых путем соответствующего капсулирования можно получить искусственные семена.

Четвертый метод клонального микроразмножения - дифференциация адвентивных почек в первичной и пересадочной каллусной ткани (рис. 6).

Рис. 6. Дифференциация придаточных почек в каллусной ткани

Практически он мало используется с целью получения посадочного материала in vitro. Это связано с тем, что при частом пассировании каллусной ткани может изменяться плоидность регенерируемых растений, наблюдаются структурные перестройки хромосом и накопление генных мутаций. Наряду с генетическими изменениями отмечаются и морфологические: низкорослость, неправильное жилкование листьев, образование укороченных междоузлий, пониженная устойчивость к болезням и вредителям. В то же время, некоторые недостатки этого метода в селекционной работе оборачиваются преимуществами.

Рис. 7. Формирование побегов каллусной тканью пшеницы

Кроме того, в некоторых случаях он является единственно возможным способом размножения растений в культуре тканей. Через каллусную культуру успешно размножаются сахарная свекла, злаковые (рис. 7), представители рода Brassica, подсолнечник и другие культуры.

источник - раздел "Культуры растительных клеток"26 сайта Биотехнология34

microklon.ru

Микроклональное размножение растений: плюсы и минусы технологии

24 февраля в Оранжерейном корпусе МГУ была интереснейшая лекция "Микроклональное размножение растений: плюсы и минусы технологии", которую подготовил по просьбе коллекционеров клуба директор Ботанического сада МГУ, д.б.н., профессор Чуб Владимир Викторович.

В лекции была подробно рассмотрена историю и научные основы методов размножения растений in vitro: фитогормоны,  применяемые при микроразмножении, принципы формирования питательных сред, основные  этапы получения посадочного материала и наиболее перспективные культуры. После лекции были рассмотрены вопросы сохранения сортовых признаков при культивировании растений in vitro.

Что же такое клонирование? Чтобы это понять, нужно знать, что же такое "клон".

Клон - вегетативный потомок особи, генетически подобный исходному.

Сорт (для многолетних растений) - клон от особенно удачного родителя.

Самые распространенные методы клонирования (размножения):

  • вегетативное размножение - деление куста
  • черенкование стеблевыми черенками
  • прививка
  • корневые черенки
  • листовые черенки
  •  части листовой пластины
  • клетками растения

Гормоны, необходимы растениям, чтобы контролировать свое развитие:

Ауксины - скапливаются в точках роста Цитокенины - в кончиках корней.

Для стимуляции роста корневой системы растениям нужно добавлять ауксин, а для наравщивания листовой массы - цитокинин.

Медь - токсична для растений и угнетает их рост и развитие.

Методы клонального микроразмножения

Существует много методов клонального микроразмножения, а также различных их классификаций. Согласно одной из них, предложенной Мурасиге в 1977 году, процесс можно осуществлять следующими путями:

  1. Активация пазушных меристем.
  2. Образование адвентивных побегов тканями экспланта.
  3. Возникновение адвентивных побегов в каллусе.
  4. Индукция соматического эмбриогенеза в клетках экспланта.
  5. Соматический эмбриогенез в каллусной ткани.
  6. Формирование придаточных эмбриоидов в ткани первичных соматических зародышей (деление первичных эмбриоидов).

Для осуществления процесса был получен экспериментальным путем (на основе размножения табака) состав среды Мурасиге-Скуго.

Позволяет преодолеть барьер нескрещиваемости и соединив клетку одного растения с клеткой другого получить соматические гибриды.

 

Для чего же нужна биотехнология in vitro

  • производство каллюсной массы в биореакторах (суспензионная культура) дает возможность получить в большом объеме вещества, содержащиеся в растениях. Например биотехнологический жень-шень, такосл (противораковое вещество) из тиса и т.п.
  • корневая культура

 

Размножение in vitro

  • получения искусственных семян (например, оздоровленный картофель, семена которого можно использовать в течение 3 лет, далее следует возобновлять посадочный материал)
  • для получения большого количества "здорового" от вирусов материала
  • размножение новинок селекции
  • криосохранение (возможность сохранить редкие растения для будущих поколений)

 

Одним из условий успешного размножения является СТЕРИЛЬНОСТЬ

  • материал подвергают стерилизации в растворе 5-7% перикиси водорода или в растворе хлора, после чего 2-3 раза промывают водой и высаживают в пробирки на питательную среду
  • среда для размножения должна быть стерильна

Микроклональное размножение - имеет сложный технологический цикл, позволяющий работать в условиях международного разделения труда, а именно:

  1. Интродукция боковых побегов с использованием богатой углеводами среды.
  2. Отделение / укоренение в среде с добавлением ауксинов и сниженным содержанием сахара.
  3. Выход из цикла: состояние покоя или адаптация растущих образцов к условиях вне пробирки (ex vitro).

Доращивание до товарного вида.

Культура меристем имеет преимущества:

  • растения свободные от вирусов (снижение титра вирусов)
  • оздоровление от различных инфекций
  • повышение урожайности

Побочные эффекты:

  • снижение способности к йотосинтезу
  • активация вироидов (веретеновидность клубней картофеля)
  • диспропорция между типами клеток у химер (окраска у химер может изменяться в процентном соотношении)
  • сомаклональная вариабельность - 14-25% полученных растений несут отклонения от образца. Иногда это можно исправить последующим семенным размножением, но не всегда.

Например, сорт хосты Patriot был отобран при микроклональном размножении образцов хосты Loyalist.

Поскольку гормоны являются мутогенами, а среда для выращивания содерит гармоны, то при меристемном размножении большая вероятность утери сортовых признаков.

 

 

 

xn----ctbabie2bpobd0bf7c0eg.xn--p1ai

Микроклональное размножение буцефаландр как альтернатива генеративному способу

В своих предыдущих публикациях я неоднократно писал, что получение посадочного материала буцефаландр для аквариума в результате закупки диких растений из природы – это путь в никуда. Основания для такого утверждения очевидны. Систематический сбор приводит к значительному сокращению природных популяций, а большинство экспортируемых растений гибнет в руках любителей из-за различных заболеваний. Для того чтобы сохранить буцефаландры в природе и в тоже время сделать их доступными для аквариумиста, необходимо осваивать эффективные методы их коммерческого разведения в неволе. Одним из таких способов, безусловно, является генеративное (семенное) размножение. Однако в настоящей заметке я хочу рассмотреть альтернативный метод – микроклональное размножение.

Для начала следует разобраться с понятиями “микроклональное” и “меристемное” размножения. Строго говоря, это не одно и то же. Меристемы являются всего лишь быстро делящимися образовательными тканями. Они присутствуют в любой растительной почке, поэтому обычное вегетативное размножение можно так же считать меристемным. Например, когда мы инициируем вегетативное размножение у анубиаса с помощью надламывания корневища, происходит активация пазушных меристем и дальнейшее образование молодых побегов из спящих почек. То же самое относится к эхинодорусам. Метод доступен каждому и легко выполним в домашних условиях. Однако это не совсем то, что нам нужно. Во-первых, материал не проходит стерилизацию, а во-вторых, масштабы размножения очень низки.

В тоже время, в классической схеме микроклонального размножения подразумевается на первой стадии получение стерильной дедифференцированной тканевой культуры (каллуса) практически из любого вегетативного органа растения, которую в дальнейшем подвергают дифференциации с образованием множества молодых побегов. Осуществляется это все с помощью варьирования концентраций фитогормонов – ауксинов и цитокининов. Первые вызывают дедифференциацию тканей, а вторые – их интенсивное деление. Все операции и выращивание проводится в стерильных условиях, и по этой причине трудновыполнимо в домашних условиях.

Существует также промежуточный вариант, в котором вырезают пазушную почку, стерилизуют ее и в дальнейшем выращивают in vitro. Выращивание возможно как безгормонально, так и с добавлением цитокининов. В последнем случае количество дочерних растений будет больше.

 

О том, что буцефаландры уже несколько лет успешно размножают микроклонально, мне рассказал Владимир Желтоног, владелец аквариумных магазинов “Водяной”. В частности, эта сеть регулярно закупает меристемные буцефаландры из Тайланда. Каким из вышеописанных способов происходит размножение из рассмотренных фотографий сказать трудно. Скорее всего, это промежуточный вариант, поскольку стадий получения каллусной культуры в фотоматериале не представлено.

В заключение рассмотрим некоторые плюсы и минусы буцефаландр полученных микроклональным способом. Самым главным преимуществом, безусловно, является отсутствие у них инфекционных заболеваний. Во-вторых, не маловажное значение имеет генетическая однородность материала, которое часто не удается соблюсти при семенном способе. Стоит однако оговорится, что при несоблюдении методик, в микроклональном варианте также возможно появление неоднородности из-за мутаций. Между тем, главным камнем преткновения меристемных растений является их адаптация к обычным (нестерильным) условиям. Причем дело тут даже не в многообразии различных микроорганизмов в естественной среде, а в изменении влажности воздуха. “В пробирке” влажность всегда высокая, из-за чего у меристемных растений с рождения на листьях открыты устьица, а закрывать их они еще не научились. В результате, после помещения в обычную воздушную среду, такие растения начинают отставать в росте или могут полностью высохнуть. Однако все это не касается буцефаландр и других аквариумных растений, ведь они предназначены для жизни под водой!

www.aquaflore.ru

микроклональное размножение | АППЯПМ

ОЛЕГ СЕРДЮКк. с.-х. н., Киев, Украина

Микроклональное размножение плодовых и ягодных культур как основа ведения современного прибыльного садоводства

Представлены теоретические и практические аспекты ведения современного прибыльного садоводства, базируясь на использовании безвирусного посадочного материала полученного путём микроклонального размножения.

Ключевые слова: микроклональное размножение растений, садоводство, питомниководство

В настоящее время в отечественных садоводческих производственных кругах ведётся дискуссия относительно целесообразности использования безвирусного (сертифицированного) посадочного материала полученного путём микроклонального размножения in vitro в связи с его высокой стоимостью (рис. 1).

Процесс микроклонального размножения

Иной причиной, которая нивелируют целесообразность применение такого посадочного материала, являются неоднократные случаи пресечения карантинными службами попыток ввоза на территорию Российской Федерации и Украины импортного посадочного материала зараженного карантинными объектами. Также обнаружены уже существующие очаги таких объектов в промышленных насаждениях и ведётся работа по их локализации и устранению [1, 2]. Вследствие этого садоводческие предприятия несут большие убытки, от чего к такому посадочному материалу складывается недоверие. Необходимо отметить, что не все питомники Европейского Союза (в основном из них импортируется посадочный материал) работают с безвирусными растениями, полученными in vitro в качестве базисного материала, и не все ведут ответственный бизнес. Внутреннюю инфекцию в растениях часто трудно обнаружить или же вообще практически не возможно. Но при её наличии она всё равно проявляется и, как правило, уже на тех этапах роста и развития растений, когда нужно полностью выкорчёвывать молодой сад, неся колоссальные убытки и доказать на каком этапе инфекция попала в растения или же она там присутствовала с самого начала уже не возможно.

С другой стороны, производители как свежих плодов и ягод, так и посадочного материала, которые имели возможность работать с безвирусным материалом, почти все склонны к тому, что при умеренной стоимости, его применение есть более экономически выгодным, по сравнению с рядовым посадочным материалом.

Для логической цепочки необходимо напомнить, что процесс микроклонального размножения растений in vitro требует прохождения следующих этапов:

  1. инициация культуры, или введение меристемной ткани растения на подходящую питательную среду;
  2. пролиферация, или наращивание микростеблей;
  3. укоренение микростеблей;
  4. акклиматизация и высадка в полевые условия (in vivo).

Наиболее целесообразно применять безвирусные растения для закладки маточных насаждений, будь то ягодных, орехоплодных, или же семечковых и косточковых культур, а также подвоев к ним. Применяя его, таким образом, обязательным условием есть периодический контроль путём тестирования отсутствия патогенных организмов в маточных растениях (как правило, раз в два года), пространственная изоляция и агротехнический уход на высоком уровне. Хотя в садоводческих предприятиях, уже давно пришедших к выводу, что микроклональное размножение – путь к повышению продуктивности, урожайности и качеству плодов, есть целесообразность закладки товарных насаждений и таким, казалось бы, дорогостоящим посадочным материалом.

Экономически хорошо сбалансированный рынок производства продукции садоводства и умеренной стоимости посадочного материала, полученного данным способом в результате постановки его на промышленную коммерческую основу, даёт возможность масштабировать в соответствии со спросом, при сравнительно небольшой себестоимости по сравнению с выращиванием посадочного материала традиционными путями (первый есть более трудоёмкий). Поэтому закладка ягодников, первого поля питомника, или же насаждений фундука материалом непосредственно полученного in vitro часто практикуется.

Первое поле питомника, заложенное сертифицированным посадочным материалом подвоев косточковых культур, полученным in vitro

Насаждения голубики преимущественно закладываются посадочным материалом, выращенным в культуре in vitro, так как данная ягодная культура трудно размножается иными способами, чтобы нарастить её для промышленных масштабов. Да и цена на ягоды голубики относительно стабильно высокая, вследствие высокого спроса на них из-за их высоких вкусовых качеств и большого количества, ценных для человеческого организма питательных веществ.

Акклиматизированный посадочный материал голубики

Наиболее вредоносные вирусы способны приводить к потерям 20–70% урожая. По этому, анализ распространённости вирусных болезней, прогноз их развития, уничтожение очагов карантинных объектов и создание безвирусного питомниководства плодовых и ягодных культур являются актуальной задачей защиты растений [3].

В России и Украине есть лаборатории почти при всех профилирующих научных и образовательных учреждениях, где изучаются вопросы, связанные с проблемами микроклонального размножения растений и их оздоровления. Для большинства плодовых и ягодных культур, а также в сортовом разрезе, подобраны оптимальные питательные среды для культивирования их in vitro на различных этапах размножения, а также отработаны методики тестирование растений на наличие латентных патогенов. Но всё-таки узким местом в цепочке от меристемы до готового саженца является акклиматизация эксплантов in vivo (в условия внешней среды, вне пробирки). На данном этапе растения требуют определённых параметров микроклимата. Для возделывания посадочного материала в промышленных масштабах это делается в акклиматизационных комплексах оснащённых специальным оборудованием позволяющим регулировать параметры микроклимата в зависимости от этапа акклиматизации растений и климатических условий внешней среды.

Растения подвоя Colt для вишни и черешни

Как известно, приборы и оборудование для обустройства лаборатории микроклонального размножения растений, компоненты для приготовления питательных сред, обустройство акклиматизационных комплексов и оплата труда квалифицированного персонала требуют значительных капиталовложений. Поэтому, в странах, где микроклональное размножение плодовых и декоративных культур поставлено на коммерческую основу, этот очень необходимый сегмент садоводческой отрасли обслуживается частными компаниями.

Причина преимущества применения безвирусного посадочного материала полученного in vitro кроется в том, что растения, проходя путь от меристемастических клеток до взрослых растений, проходят процесс “реювенилизации” (омолаживания) в результате чего лишаются действия накопившейся в растениях “усталости” вызванной стрессовыми факторами.

Растения подвоя Gizela 5 для вишни и черешни

Поэтому, применяя оздоровленный посадочный материал в комплексе с высокой агротехникой, можно получить более высокую отдачу урожая и более раннее вступление растений в период товарного плодоношения, таким образом обеспечить быстрое возвращение вложенных инвестиций и получить более высокий доход по сравнению с использованием обычного посадочного материала.

Плодоносящие насаждения ежевики сорта Loch Ness, заложенные сертифицированным посадочным материалом

С научно-производственной позиции к недостаткам микроклонального размножения относят иногда проявляющуюся генетическую нестабильность материала in vitro. То есть, проходя через in vitro условия, геном растительного материала способный поддаваться мутациям в результате действия разнообразных факторов, а в последнее время широкого применения ферментов, и на выходе может отличаться от материнских растений. Как показывает практика, вероятность возникновения таких отклонений небольшая, и при выращивании в промышленных масштабах особого опасения не вызывает. К тому же, в процессе акклиматизации и доработки посадочного материала до стандартных кондиций, он проходит тщательный визуальный контроль и при выявлении растений с явно выраженными отклонениями, они выбраковываются. Базисные клоны, с которых берут экспланты для размножения in vitro во избежание возникновения генетических отклонений, наиболее целесообразно тестировать с помощью молекулярных маркеров.

Применяя безвирусный посадочный материал для закладки садов в комплексе с оптимальным научно обоснованным районированием культур и сортов, а также научно обоснованными схемами размещения растений в насаждениях, системами формирования и придерживаясь высокого уровня агротехники, можно добиться наивысшей урожайности плодовых, ягодных и орехоплодных культур.

Закладка плодовых почек на однолетних саженцах яблони сорта Golden Delicious

Работая в тесном сотрудничестве с государственными органами управления, научными учреждениями и микроклональными лабораториями садоводческие предприятия могут решить проблему наличия качественного посадочного материала в достаточных количествах для закладки промышленных насаждений. Как следствие, они значительно смогут повысить доходность и таким образом улучшить инвестиционную привлекательность садоводческой отрасли. Несомненно, в России и

Украине есть своё собственное богатейшее селекционное наследие: отличные сорта плодовых, ягодных и орехоплодных культур, а также, подвои к ним [4, 5]. Разработаны методические указания по производству и сертификации посадочного материала плодовых, ягодных культур и винограда, а также контроля его качества [6] За информацией Ю.В. Трунова и соавторов [7] в России, в среднем, ежегодно употребляется 47 кг продукции садоводства на человека, из которых 27 кг

импортного происхождения, в то время, как научно-обоснованная годичная норма составляет 75 кг/чел, схожая картина наблюдается и в Украине. Смотря на благоприятные почвенные и климатические условия садоводческих регионов Российской Федерации и Украины, применяя комплексный подход по ведению садоводства, базируясь на выращивании безвирусного посадочного материала, можно значительно увеличить долю рынка фруктов отечественной продукцией по традиционным культурам.

Подвой для персика и нектарина GF 677

Таким образом, безвирусный посадочный материал ягодных культур, полученный in vitro целесообразно применять как для закладки маточных, так и плодоносных насаждений. Вегетативные подвои для косточковых культур (вишня, черешня, абрикос, слива, алыча, персик, нектарин), полученные таким же образом, экономически обосновано применять как для высадки в первое поле питомника, для непосредственного выращивания саженцев, так и для закладки маточных насаждений.

Саженцы Фундука (Лесного ореха)

Насаждения фундука (лесного ореха) наиболее выгодно закладывать материалом, непосредственно полученным in vitro, так как при этом получается очень выровненные саженцы, которые отлично приживаются.

Однолетние саженцы груши, выращенные на безвирусной основе

Касательно подвоев для семечковых культур (яблоня, груша, айва) экономически целесообразно сертифицированный посадочный материал применять для закладки маточников клоновых подвоев и возделывать по традиционным схемам. При этом растения необходимо тестировать на отсутствие латентных патогенов минимум один раз в два года, соблюдать пространственную изоляцию между насаждениями и применять высокого уровня агротехнику.

Паспортизированный маточно-черенковый сад черешни

Маточно-черенковые сады необходимо закладывать саженцами, подвойная и привойная части которых были получены непосредственно in vitro и прошли тестирование на отсутствие патогенов, при этом также необходима пространственная изоляция и соответственный агротехнический уход, с периодическим тестированием на отсутствие патогенных организмов.

Как правило, насаждения будь то маточники ягодников, клоновых подвоев или же маточно-черенковые сады, которые были заложены безвирусным посадочным материалом, полученным in vitro в сертифицированных лабораториях, и за которыми ведётся уход в соответствии с необходимыми нормами и требованиями,

паспортизируются, и ведётся их учёт государственными отраслевыми органами управления.

Сертифицированные растения персика во втором поле питомника

Это впоследствии служит основой для получения сертификата, что посадочный материал, полученный с их использованием, является безвирусным.

Поэтому, для ведения прибыльного садоводческого бизнеса, будь то возделывание свежих плодов или ягод, посадочного материала, или в комплексе, что является наиболее выгодным, необходимо применять сертифицированный безвирусный посадочный материал.

Безвирусный посадочный материал плодовых и ягодных культур

Литература

  1. Опасное заболевание плодовых – бактериальный ожог [Электронный ресурс]. www.rshn-kbr.ru/index.php
  2. Бактеріальний опік плодових Erwinia amylovora Burill [Електронний ресурс]. www.zakarpatkarantin.com.ua/bak_opik_plodovyh.doc
  3. Упадышев М.Т. Вирусные болезни и современные методы оздоровления плодовых и ягодных культур: автореф. дис. на соискание научн. степени доктора с.-х. наук. – Москва, 2011. – 46 с.
  4. Государственный реестр селекционных достижений, допущенных к использованию в 2011 г [Электронный ресурс]. http://www.gossort.com/ree_cont.html
  5. Державний реєстр сортів рослин придатних для поширення в Україні у 2011 році [Електронний ресурс]. http://sops.gov.ua/index.php?page=error404
  6. Куликов И.М. Производство и сертификация посадочного материала плодовых, ягодных культур и винограда в России. Контроль качества. Часть 1. Ягодные культуры / [под общ. ред. акад. РАСХН И.М. Куликова]. – М.: ВСТИСП, 2009. – 164 с.
  7. Trunov Yu. V., Nikitin A. V., Solopov V.A.. La frutticoltura in Russia: importanza del settore e situazione della ricerca // Rivista di FRUTTICOLTURA e di ortofloricoltura. – Vol. 6 (LXXIII), 2011. pp. 52–59.

asprus.ru

Каковы главные основы микроразмножения комнатных растений?

Технику микроразмножения можно практиковать в домашних условиях. Многие растения можно размножить только путём микроразмножения. Так же этот метод хорош для выведения новых разновидностей растений.

Микроразмножение- это методика размножения растений в лабораторных условиях или в искусственно созданных условиях. Для микроразмножения берутся побегообразные участки растений ( кончики корней, основания молодых листьев, боковые почки) , отделяют от основного растения и помещают в питательную среду в специальный контейнер или пробирку, где они продолжают своё развитие.

У такого размножения множество положительных моментов.Особенно такой вид рекомендован для растений, зараженных вирусом. Учёными было обнаружено, что на верхушках корней образовательные ткани растения не повреждаются вирусом. Размножение растения таким способом позволяет получить абсолютно здоровое растение от зараженного.

Микроразмножение позволяет размножить те виды и разновидности растений, которые не дают семян и которые поэтому невозможно скрестить с другим видом.

Микроразмножение в домашних условиях.

Необходимые предметы.

Для него можно использовать аквариум достаточного размер. Рядом должна находится лампа дневного света ( 1000-1500 лк), дополнительная система обогрева ( температура окружающей среды должна быть 20-25 градусов), система аэрации, для которой хорошо подойдет электровентилятор.

Стерилизатор необходим для стерилизации предметов, которыми будет производиться срезка посевного материала и стерилизации субстрата и посадочных контейнеров. Дезинфицирующий отбеливатель ( гипохлорид натрия) разводится в дистиллированной воде до 5 % концентрации и используется для стерилизации рабочей поверхности, после её дезинфекции поверхность промывается дистиллированной водой. 1-2 % раствор гипохлорита натрия нужен для стерилизации микрочеренков. Все работы проводятся в медицинских перчатках.

Для срезки микрочеренков используют безопасные бритвы. Черенки складываются в специально подготовленные емкости с широким горлышком.

Субстратом для размножения обычно служит агар-агар. К агар-агару добавляют гормоны и удобрения. Готовые среды для микроразмножения можно найти в аптеках. Полученные растеньица высаживают в торфяной субстрат с нейтральной pH средой. Используют фитогормоны двух типов , для стимуляции роста и пролиферации побегов.

Начало процесса микроразмножения.

Для начала подготовить аквариум или шкаф. оснастить его освещением, отоплением, вентиляцией.

Подготовить питательную среду, обогатив её фитогормонами, наполняют этой смесью колбы или контейнеры. После этой процедуры лезвия и баночки отправляют на стерилизацию в стерилизатор, процедура стерилизации проходит в течении 20 минут при температуре 110-120 градусов. В это время идет подготовка рабочего стола, то есть его промывка 5 % раствором гипохлорита натрия.

Очередной этап- взять самую верхнюю часть растения, которая будет выращиваться (самый легкий для начинающих экземпляр для микроразмножения- сенполия), удаляют с верхушки самые мелкие листочки. Перед помещением очищенной части растения в сосуд, её дезинфицируют 2 % раствором гипохлорита натрия, и промывают дистиллированной водой. Емкость закрывают и ставят в шкаф, где она выдерживается в течении 20-40 дней, с четырнадцатичасовым освещением.

Следующий этап микроразмножения.

Когда микрочеренок, похожий на зелёный сгусток с горошину, с образовавшимися зачатками органов, подготавливают субстрат для укоренения и новые емкости, стерилизуют в стерилизаторе вместе с режущими инструментами. Рабочую поверхность простерилизовать так же, как и на первом этапе. Теперь можно достать растеньице из шкафа или закрытого аквариума, разделить его стерильным лезвием на части. Эти частички нового растения помещают в новые емкости и вновь отправляют в шкаф дней на 20-30 для образования корневой системы. Световой день так же составляет 14 часов.

Последний этап.

Когда образуются корни, растение достают из сосудов для микроразмножения и сажают в горшки , наполненный торфом с нейтральной средой. Затем эти горшочки помещают в специальные пластиковые трубы, чтобы новым растениям можно было постепенно привыкнуть к окружающей среде. После адаптации, которая длится 4-6 недель можно уже выращивать эти новые растения обычным способом, который присущ тому растению, от которого вы взяли материал для микроразмножения. Наиболее подходящие растения для микроразмножения: орхидеи, хризантемы, сенполии, бегонии, азалии, рододендроны, камелии, фикусовые и марантовые.

www.bolshoyvopros.ru

Технология микроклонального размножения хризантемы в условиях in vitro

 

Анализ российского рынка садовых, декоративных культур свидетельствует: в последние годы интерес на новые сорта данных культур существенно вырос. В ходе процесса перехода экономики страны к импортозамещению очевидна необходимость сокращения импорта посадочного материала, становится актуальной проблема массового производства различных сортов однолетних и многолетних цветочных культур внутри России. Отстраняться от неё нельзя: наличие высокого инфекционного фона у завезённого посадочного материала сказывается не только на качестве цветения, внешнем виде и продолжительности жизни растений, но и вызывает заражение окружающей среды опасными патогенами, что оказывает отрицательное влияние на экологию регионов. Проблема может быть успешно решена с использованием при размножении ценных сортов методов биотехнологии [1].

В промышленном производстве цветочных культур во всем мире в настоящее время наиболее перспективным методом размножения растений считается метод in vitro.

Этот метод имеет существенные преимущества перед традиционными способами размножения растений:

                    получение генетически однородного посадочного материала;

                    получение безвирусных растений за счет использования меристемной культуры;

                    высокий коэффициент размножения;

                    возможность проведения работ в течение года и экономия площадей, необходимых для выращивания посадочного материала;

                    пробирочные растения легко транспортировать на любые расстояния.

Использование технологий микроклонального размножения позволяет сократить время выращивания до товарного стандарта, к примеру, для декоративно-лиственных бегоний и сенполий на 1–1,5 мес., для хризантем, лилий, гвоздик и орхидей — на 3–4 месяца. Размножая какой-либо новейший сорт, можно вырастить несколько миллионов растений за один год, и, дорастив их в течение 2–3 лет, получить качественный посадочный материал. При обычных методах размножения для этого понадобилось бы более 10 лет [2].

В мировом масштабе большая часть декоративно-цветочного ассортимента массового производства выпускается с применением технологий микроклонального размножения.

Микроразмножение растений, начавшее распространяться в 60-е годы 20 века, оформилось как мощное промышленное производство, быстро реагирующее на запросы рынка. К примеру, только за период с 1985 по 1990 годы число растений, размножаемых in vitro, возросло с 130 млн. до 513 млн. Мировыми лидерами в этой области являются Нидерланды, США, Индия, Израиль, Италия, Польша и другие страны. В США микроразмножением занимаются около 100 лабораторий, 5 из которых имеют производительность 15–20 млн. растений в год, 8–10 лабораторий — от 2–10 млн., остальные менее 1 млн. растений. Из 248 коммерческих лабораторий Западной Европы с общей годовой производительностью 212 миллионов растений только 37 производят более 1 млн.

Лидером микроразмножения растений в Западной Европе являются Нидерланды (около 70 лабораторий занимается микроразмножением). Это связано с традиционнной ориентацией на производство декоративных культур, где Нидерланды доминируют на мировом рынке (около половины мирового экспорта цветов на срезку и декоративных растений экспортируется из этой страны). Наиболее важными группами растений, размножаемых in vitro в этой стране, являются такие декоративные культуры, как горшечные растения на срезку, орхидеи и луковичные.

В России накоплен большой опыт по микроклональному размножению наиболее востребованных культур; практически во всех научно-исследовательских институтах, селекционных центрах созданы лаборатории биотехнологии, одна из главных задач которых оздоровление и микроклональное размножение ценного селекционного материала и перспективных сортов.

Сейчас технологии клонального микроразмножения invitro на лабораторном уровне разработаны в мире более чем для 2400 видов растений. Однако коммерческих лабораторий, использующих эти приёмы, относительно немного, около 200. Это объясняется отчасти тем, что не все, разработанные в сугубо лабораторных условиях методики, применимы непосредственно в производстве. Часто требуется решение отдельных узловых моментов для конкретных видов растений. Немаловажным является и вопрос экономической эффективности [3].

Среди цветочных культур большой популярностью и спросом несомненно пользуется хризантема. Хризантема сегодня входит в список наиболее популярных цветочных культур, которые распространены по всему миру. Для потребителя предлагаются как срезочные, так и горшечные, садовые и тепличные растения. По объему продаж хризантемы уступают только розам. Более чем за 2000-летнию историю культуры создано около 7000 сортов хризантем, часть из которых используют в кулинарии, в фармацевтической промышленности, а также в качестве инсектицидов. Однако наибольшую популярность хризантема снискала в цветоводстве [4].

В тоже время на территории Российской Федерации объемы производства посадочного материала современных сортов недостаточны, а имеющийся материал дорогостоящий. В связи с этим разработка современной технологии увеличения объёмов производства, равно как, и удешевления посадочного материала весьма актуальны.

В лаборатории биотехнологии сельскохозяйственных растений Самарского НИИСХ мы провели оптимизацию основных элементов технологии микроклонального размножения хризантемы корейской в условиях invitro. В качестве объекта исследования были использованы микрорастения хризантемы корейской сорта Улыбка Гагарина.

В нашем эксперименте мы использовали классическую схему микрокланального размножения основанную на активации развития уже существующих в растении меристем (апекс стебля, пазушные и спящие почки и интеркалярные зоны стебля) и индукции возникновения адвентивных почек непосредственно тканями экспланта. Рисунок 1.

Рис. 1. Схема микроклонального размножения растений

 

В качестве питательной среды в эксперименте использовалась минеральная основа среды Мурасиге и Скуга с добавлением природного биологического загустителя Агар-Агара в количестве 6 г/л, а также различных концентраций фитогормонов, витаминов и органических добавок. Таблица 1.

 

Таблица 1

Минеральная основа среды Мурасиге и Скуга

Компоненты

Содержание,

мг/л

Компоненты

Содержание,

мг/л

Nh5NO3

1650

Fe2SO4 7h3O

27,8

KNO3

1900

Na2-ЭДТА 2h3O

37,3

CaCl2. 2h3O

440

Тиамин — HCl

0,1

MgSO4. 4h3O

370

Пиридоксин — HCl

0,5

Kh3PO4

170

Никотиновая кислота

0,5

MnSO4. 4h3O

22,3

Мезо-инозит

100

CoCl2.6h3O

0,025

Сахароза

30.000

ZnSO4. 7h3O

8,6

рН 5,6–5,8

CuSO4. 5h3O

0,025

Na2MoO4. 2h3O

0,25

Kl

0,83

 

Традиционно процесс клонального микроразмножения включает в себя четыре основныхэтапа:

                    выбор растения-донора и получение хорошо растущей стерильной культуры;

                    собственно микроразмножение;

                    укоренение микропобегов и при необходимости их депонирование при пониженных температурах;

                    адаптацию пробирочных растений к почвенным условиям теплицы или открытого грунта.

В наших экспериментах в качестве эксплантов были взяты растительные побеги хризантемы длиной 2,5–3 см.

Важным этапом введение в культуру invitro является получение хорошо растущей стерильной культуры или ростков. От правильно выбранных для стерилизации растительных объектов химических реагентов зависит эффективность разработанной технологии микроклонального размножения и общий успех производства. В результате проведенных исследований было установлено, что наиболее эффективной схемой стерилизации при введении хризантемы в условия invitro является двухэтапная схема стерилизации. Первый этап стерилизация растительных эксплантов в растворе пероксида водорода (12 %) в течении 5 мин. Далее трижды промывают стерильной дистиллированной водой. Второй этап с использованием препаратов «Белизна» или «Domestos» в разведении 1:9, в течении 10 мин. Завершающим этапом стерилизации, тройная промывка растительных объектов стерильной дистиллированной водой. При данном способе стерилизации жизнеспособность эксплантов составляла более 70 %.

После выполнения этапа стерилизации у растительных эксплантов скальпелем подрезается нижняя часть стебля и далее подготовленные черенки высаживают на питательную среду Мурасиге и Скуга, дополненную сахарозой 30 г/л и регуляторами роста 1,0 мг/л кинетина и 0,5 мг/л нафтилуксусной кислоты. Дальнейшее культивирование микро растений осуществляется в факторостатной комнате при 16-часовом освещении люминесцентными фитолампами с интенсивностью около 3000 лк, при температуре 20–25°C (физические условия выращивания близки к оптимальным для культивирования эксплантов растений).

В процессе культивирования на стерильных эксплантах формируются боковые побеги, которые в последующем отделяют от маточного растения и помещают на свежую питательную среду для роста и укоренения, или используют для дальнейшего черенкования. В первом случае используют питательную среду с 50 %-ным составом макросолей с добавлением стимулятора ростовых процессов Рибав-Экстра (0,00152 г/л L-аланин + 0,00196 г/л L-глутаминновой кислоты) в количестве 0,1 мг/л. Во втором случае используется прежний состав питательной среды.

При укоренении микропобегов на агаризованной питательной среде Мурасиге-Скуга с добавлением Рибав-Экстра в течение 2 недель культивирования формируются побеги максимальной длины — 5–6 см. и 3–4 корешками длинной 1,5–2 см. В дальнейшем сформировавшиеся побеги с корнями переносят для адаптации к естественным условиям открытого грунта. Микро-растения пересаживаются в кассеты с питательным субстратом состоящим из смеси нейтрализованного торфа и перлита (вермикулит) в соотношении 1:1. Для более эффективной приживаемости микроклонов в помещении для адаптации необходимо использовать систему туманообразования фирмы «СОХРА». Данная система поддерживает в оптимальном режиме влажность воздуха и тем самым не дает листовой поверхности интенсивно терять влагу. После укоренения размноженные растения выращивают обычным способом.

 

Литература:

 

  1.                Шевченко, С. Н. Самарская наука: ответ на зарубежные санкции // Шевченко С. Н., Милехин А. В., Рубцов С. Л. / Агроинформ, № 3 (197) // март 2015, с. 36–37.
  2.                Бутенко Р. Г. Биология клеток высших растений in vitro и биотехнологии на их основе: Учеб. пособие — М.: ФБК-ПРЕСС, 1999.
  3.                СассонА.Биотехнология:свершенияи надежды: Пер. с англ. / Под ред., с предисл. и допл. В. Г. Дебабова. — М.: Мир1987. — 411с.
  4.                Гранда Харамильо Роберто Карлос. Идентификация В вируса хризантем и создание коллекций invitro оздоровленного посадочного материала. — автореферат дис…к.б.н. /МСХА имени К. А. Тимирязева. — Москва, 2009. — 19 с.

moluch.ru